

Welcome to QEMU’s documentation!

Contents:

	QEMU System Emulation Management and Interoperability Guide
	Dirty Bitmaps and Incremental Backup

	D-Bus

	D-Bus VMState

	Live Block Device Operations

	Persistent reservation helper protocol

	QEMU Guest Agent

	Vhost-user Protocol

	Vhost-user-gpu Protocol

	QEMU Developer’s Guide
	QEMU and Kconfig

	Load and Store APIs

	The memory API

	Migration

	QEMU and the stable process

	Testing in QEMU

	Decodetree Specification

	Secure Coding Practices

	Translator Internals

	QEMU TCG Plugins

	Bitwise operations

	Reset in QEMU: the Resettable interface

	Booting from real channel-attached devices on s390x

	QEMU System Emulation Guest Hardware Specifications
	POWER9 XIVE interrupt controller

	XIVE for sPAPR (pseries machines)

	QEMU and ACPI BIOS Generic Event Device interface

	QEMU TPM Device

	QEMU System Emulation User’s Guide
	Quick Start

	Invocation

	Keys in the graphical frontends

	Keys in the character backend multiplexer

	QEMU Monitor

	Disk Images

	Network emulation

	USB emulation

	Inter-VM Shared Memory device

	Direct Linux Boot

	VNC security

	TLS setup for network services

	GDB usage

	Managed start up options

	QEMU System Emulator Targets

	Security

	Adjunct Processor (AP) Device

	Deprecated features

	Recently removed features

	Supported build platforms

	License

	QEMU Tools Guide
	QEMU disk image utility

	QEMU Disk Network Block Device Server

	QEMU SystemTap trace tool

	QEMU 9p virtfs proxy filesystem helper

	QEMU virtio-fs shared file system daemon

	QEMU User Mode Emulation User’s Guide
	QEMU User space emulator

QEMU System Emulation Management and Interoperability Guide

This manual contains documents and specifications that are useful
for making QEMU interoperate with other software.

Contents:

	Dirty Bitmaps and Incremental Backup
	Overview

	Supported Image Formats

	Dirty Bitmap Names

	Bitmap Status

	Basic QMP Usage

	Bitmap Persistence

	Transactions

	Incremental Backups - Push Model

	Push Backup Errors & Recovery

	D-Bus
	Introduction

	Security

	Guidelines

	QEMU Interfaces

	D-Bus VMState
	Introduction

	Interface

	Live Block Device Operations
	Disk image backing chain notation

	Brief overview of live block QMP primitives

	Interacting with a QEMU instance

	Example disk image chain

	A note on points-in-time vs file names

	Live block streaming — block-stream

	Live block commit — block-commit

	Live disk synchronization — drive-mirror and blockdev-mirror

	Live disk backup — drive-backup and blockdev-backup

	Persistent reservation helper protocol
	Connection and initialization

	Command format

	QEMU Guest Agent
	Synopsis

	Description

	Options

	Files

	See also

	Vhost-user Protocol
	Introduction

	Message Specification

	Communication

	Backend program conventions

	Vhost-user-gpu Protocol
	Introduction

	Wire format

	Communication

Dirty Bitmaps and Incremental Backup

Dirty Bitmaps are in-memory objects that track writes to block devices. They
can be used in conjunction with various block job operations to perform
incremental or differential backup regimens.

This document explains the conceptual mechanisms, as well as up-to-date,
complete and comprehensive documentation on the API to manipulate them.
(Hopefully, the “why”, “what”, and “how”.)

The intended audience for this document is developers who are adding QEMU
backup features to management applications, or power users who run and
administer QEMU directly via QMP.

Contents

	Dirty Bitmaps and Incremental Backup

	Overview

	Supported Image Formats

	Dirty Bitmap Names

	Bitmap Status

	Basic QMP Usage

	Supported Commands

	Creation: block-dirty-bitmap-add

	Deletion: block-dirty-bitmap-remove

	Resetting: block-dirty-bitmap-clear

	Enabling: block-dirty-bitmap-enable

	Enabling: block-dirty-bitmap-disable

	Merging, Copying: block-dirty-bitmap-merge

	Querying: query-block

	Bitmap Persistence

	Transactions

	Justification

	Supported Bitmap Transactions

	Incremental Backups - Push Model

	Example: New Incremental Backup Anchor Point

	Example: Resetting an Incremental Backup Anchor Point

	Example: First Incremental Backup

	Example: Second Incremental Backup

	Example: Incremental Push Backups without Backing Files

	Example: Multi-drive Incremental Backup

	Push Backup Errors & Recovery

	Example: Individual Failures

	Example: Partial Transactional Failures

	Example: Grouped Completion Mode

Overview

Bitmaps are bit vectors where each ‘1’ bit in the vector indicates a modified
(“dirty”) segment of the corresponding block device. The size of the segment
that is tracked is the granularity of the bitmap. If the granularity of a
bitmap is 64K, each ‘1’ bit means that a 64K region as a whole may have
changed in some way, possibly by as little as one byte.

Smaller granularities mean more accurate tracking of modified disk data, but
requires more computational overhead and larger bitmap sizes. Larger
granularities mean smaller bitmap sizes, but less targeted backups.

	The size of a bitmap (in bytes) can be computed as such:

	size = ceil(ceil(image_size / granularity) / 8)

	e.g. the size of a 64KiB granularity bitmap on a 2TiB image is:

	
	size = ((2147483648K / 64K) / 8)

	= 4194304B = 4MiB.

QEMU uses these bitmaps when making incremental backups to know which sections
of the file to copy out. They are not enabled by default and must be
explicitly added in order to begin tracking writes.

Bitmaps can be created at any time and can be attached to any arbitrary block
node in the storage graph, but are most useful conceptually when attached to
the root node attached to the guest’s storage device model.

That is to say: It’s likely most useful to track the guest’s writes to disk,
but you could theoretically track things like qcow2 metadata changes by
attaching the bitmap elsewhere in the storage graph. This is beyond the scope
of this document.

QEMU supports persisting these bitmaps to disk via the qcow2 image format.
Bitmaps which are stored or loaded in this way are called “persistent”,
whereas bitmaps that are not are called “transient”.

QEMU also supports the migration of both transient bitmaps (tracking any
arbitrary image format) or persistent bitmaps (qcow2) via live migration.

Supported Image Formats

QEMU supports all documented features below on the qcow2 image format.

However, qcow2 is only strictly necessary for the persistence feature, which
writes bitmap data to disk upon close. If persistence is not required for a
specific use case, all bitmap features excepting persistence are available for
any arbitrary image format.

For example, Dirty Bitmaps can be combined with the ‘raw’ image format, but
any changes to the bitmap will be discarded upon exit.

Warning

Transient bitmaps will not be saved on QEMU exit! Persistent
bitmaps are available only on qcow2 images.

Dirty Bitmap Names

Bitmap objects need a method to reference them in the API. All API-created and
managed bitmaps have a human-readable name chosen by the user at creation
time.

	A bitmap’s name is unique to the node, but bitmaps attached to different
nodes can share the same name. Therefore, all bitmaps are addressed via
their (node, name) pair.

	The name of a user-created bitmap cannot be empty (“”).

	Transient bitmaps can have JSON unicode names that are effectively not
length limited. (QMP protocol may restrict messages to less than 64MiB.)

	Persistent storage formats may impose their own requirements on bitmap names
and namespaces. Presently, only qcow2 supports persistent bitmaps. See
docs/interop/qcow2.txt for more details on restrictions. Notably:

	qcow2 bitmap names are limited to between 1 and 1023 bytes long.

	No two bitmaps saved to the same qcow2 file may share the same name.

	QEMU occasionally uses bitmaps for internal use which have no name. They are
hidden from API query calls, cannot be manipulated by the external API, are
never persistent, nor ever migrated.

Bitmap Status

Dirty Bitmap objects can be queried with the QMP command query-block, and are visible via the
BlockDirtyInfo QAPI structure.

This struct shows the name, granularity, and dirty byte count for each bitmap.
Additionally, it shows several boolean status indicators:

	recording: This bitmap is recording writes.

	busy: This bitmap is in-use by an operation.

	persistent: This bitmap is a persistent type.

	inconsistent: This bitmap is corrupted and cannot be used.

The +busy status prohibits you from deleting, clearing, or otherwise
modifying a bitmap, and happens when the bitmap is being used for a backup
operation or is in the process of being loaded from a migration. Many of the
commands documented below will refuse to work on such bitmaps.

The +inconsistent status similarly prohibits almost all operations,
notably allowing only the block-dirty-bitmap-remove operation.

There is also a deprecated status field of type DirtyBitmapStatus. A bitmap historically had
five visible states:

	Frozen: This bitmap is currently in-use by an operation and is
immutable. It can’t be deleted, renamed, reset, etc.

(This is now +busy.)

	Disabled: This bitmap is not recording new writes.

(This is now -recording -busy.)

	Active: This bitmap is recording new writes.

(This is now +recording -busy.)

	Locked: This bitmap is in-use by an operation, and is immutable.
The difference from “Frozen” was primarily implementation details.

(This is now +busy.)

	Inconsistent: This persistent bitmap was not saved to disk
correctly, and can no longer be used. It remains in memory to serve as
an indicator of failure.

(This is now +inconsistent.)

These states are directly replaced by the status indicators and should not be
used. The difference between Frozen and Locked is an implementation
detail and should not be relevant to external users.

Basic QMP Usage

The primary interface to manipulating bitmap objects is via the QMP
interface. If you are not familiar, see docs/interop/qmp-intro.txt for a broad
overview, and qemu-qmp-ref for a full reference of all
QMP commands.

Supported Commands

There are six primary bitmap-management API commands:

	block-dirty-bitmap-add

	block-dirty-bitmap-remove

	block-dirty-bitmap-clear

	block-dirty-bitmap-disable

	block-dirty-bitmap-enable

	block-dirty-bitmap-merge

And one related query command:

	query-block

Creation: block-dirty-bitmap-add

block-dirty-bitmap-add:

Creates a new bitmap that tracks writes to the specified node. granularity,
persistence, and recording state can be adjusted at creation time.

Example

to create a new, actively recording persistent bitmap:

-> { "execute": "block-dirty-bitmap-add",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0",
 "persistent": true,
 }
 }

<- { "return": {} }

	This bitmap will have a default granularity that matches the cluster size of
its associated drive, if available, clamped to between [4KiB, 64KiB]. The
current default for qcow2 is 64KiB.

Example

To create a new, disabled (-recording), transient bitmap that tracks
changes in 32KiB segments:

-> { "execute": "block-dirty-bitmap-add",
 "arguments": {
 "node": "drive0",
 "name": "bitmap1",
 "granularity": 32768,
 "disabled": true
 }
 }

<- { "return": {} }

Deletion: block-dirty-bitmap-remove

block-dirty-bitmap-remove:

Deletes a bitmap. Bitmaps that are +busy cannot be removed.

	Deleting a bitmap does not impact any other bitmaps attached to the same
node, nor does it affect any backups already created from this bitmap or
node.

	Because bitmaps are only unique to the node to which they are attached, you
must specify the node/drive name here, too.

	Deleting a persistent bitmap will remove it from the qcow2 file.

Example

Remove a bitmap named bitmap0 from node drive0:

-> { "execute": "block-dirty-bitmap-remove",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
 }

<- { "return": {} }

Resetting: block-dirty-bitmap-clear

block-dirty-bitmap-clear:

Clears all dirty bits from a bitmap. +busy bitmaps cannot be cleared.

	An incremental backup created from an empty bitmap will copy no data, as if
nothing has changed.

Example

Clear all dirty bits from bitmap bitmap0 on node drive0:

-> { "execute": "block-dirty-bitmap-clear",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
 }

<- { "return": {} }

Enabling: block-dirty-bitmap-enable

block-dirty-bitmap-enable:

“Enables” a bitmap, setting the recording bit to true, causing writes to
begin being recorded. +busy bitmaps cannot be enabled.

	Bitmaps default to being enabled when created, unless configured otherwise.

	Persistent enabled bitmaps will remember their +recording status on
load.

Example

To set +recording on bitmap bitmap0 on node drive0:

-> { "execute": "block-dirty-bitmap-enable",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
 }

<- { "return": {} }

Enabling: block-dirty-bitmap-disable

block-dirty-bitmap-disable:

“Disables” a bitmap, setting the recording bit to false, causing further
writes to begin being ignored. +busy bitmaps cannot be disabled.

Warning

This is potentially dangerous: QEMU makes no effort to stop any writes if
there are disabled bitmaps on a node, and will not mark any disabled bitmaps
as +inconsistent if any such writes do happen. Backups made from such
bitmaps will not be able to be used to reconstruct a coherent image.

	Disabling a bitmap may be useful for examining which sectors of a disk
changed during a specific time period, or for explicit management of
differential backup windows.

	Persistent disabled bitmaps will remember their -recording status on
load.

Example

To set -recording on bitmap bitmap0 on node drive0:

-> { "execute": "block-dirty-bitmap-disable",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
 }

<- { "return": {} }

Merging, Copying: block-dirty-bitmap-merge

block-dirty-bitmap-merge:

Merges one or more bitmaps into a target bitmap. For any segment that is dirty
in any one source bitmap, the target bitmap will mark that segment dirty.

	Merge takes one or more bitmaps as a source and merges them together into a
single destination, such that any segment marked as dirty in any source
bitmap(s) will be marked dirty in the destination bitmap.

	Merge does not create the destination bitmap if it does not exist. A blank
bitmap can be created beforehand to achieve the same effect.

	The destination is not cleared prior to merge, so subsequent merge
operations will continue to cumulatively mark more segments as dirty.

	If the merge operation should fail, the destination bitmap is guaranteed to
be unmodified. The operation may fail if the source or destination bitmaps
are busy, or have different granularities.

	Bitmaps can only be merged on the same node. There is only one “node”
argument, so all bitmaps must be attached to that same node.

	Copy can be achieved by merging from a single source to an empty
destination.

Example

Merge the data from bitmap0 into the bitmap new_bitmap on node
drive0. If new_bitmap was empty prior to this command, this achieves
a copy.

-> { "execute": "block-dirty-bitmap-merge",
 "arguments": {
 "node": "drive0",
 "target": "new_bitmap",
 "bitmaps": ["bitmap0"]
 }
 }

<- { "return": {} }

Querying: query-block

query-block:

Not strictly a bitmaps command, but will return information about any bitmaps
attached to nodes serving as the root for guest devices.

	The “inconsistent” bit will not appear when it is false, appearing only when
the value is true to indicate there is a problem.

Example

Query the block sub-system of QEMU. The following json has trimmed irrelevant
keys from the response to highlight only the bitmap-relevant portions of the
API. This result highlights a bitmap bitmap0 attached to the root node of
device drive0.

-> {
 "execute": "query-block",
 "arguments": {}
 }

<- {
 "return": [{
 "dirty-bitmaps": [{
 "status": "active",
 "count": 0,
 "busy": false,
 "name": "bitmap0",
 "persistent": false,
 "recording": true,
 "granularity": 65536
 }],
 "device": "drive0",
 }]
 }

Bitmap Persistence

As outlined in Supported Image Formats, QEMU can persist bitmaps to qcow2
files. Demonstrated in Creation: block-dirty-bitmap-add, passing
persistent: true to block-dirty-bitmap-add will persist that bitmap to
disk.

Persistent bitmaps will be automatically loaded into memory upon load, and
will be written back to disk upon close. Their usage should be mostly
transparent.

However, if QEMU does not get a chance to close the file cleanly, the bitmap
will be marked as +inconsistent at next load and considered unsafe to use
for any operation. At this point, the only valid operation on such bitmaps is
block-dirty-bitmap-remove.

Losing a bitmap in this way does not invalidate any existing backups that have
been made from this bitmap, but no further backups will be able to be issued
for this chain.

Transactions

Transactions are a QMP feature that allows you to submit multiple QMP commands
at once, being guaranteed that they will all succeed or fail atomically,
together. The interaction of bitmaps and transactions are demonstrated below.

See transaction in the QMP reference
for more details.

Justification

Bitmaps can generally be modified at any time, but certain operations often
only make sense when paired directly with other commands. When a VM is paused,
it’s easy to ensure that no guest writes occur between individual QMP
commands. When a VM is running, this is difficult to accomplish with
individual QMP commands that may allow guest writes to occur inbetween each
command.

For example, using only individual QMP commands, we could:

	Boot the VM in a paused state.

	Create a full drive backup of drive0.

	Create a new bitmap attached to drive0, confident that nothing has been
written to drive0 in the meantime.

	Resume execution of the VM.

	At a later point, issue incremental backups from bitmap0.

At this point, the bitmap and drive backup would be correctly in sync, and
incremental backups made from this point forward would be correctly aligned to
the full drive backup.

This is not particularly useful if we decide we want to start incremental
backups after the VM has been running for a while, for which we would want to
perform actions such as the following:

	Boot the VM and begin execution.

	Using a single transaction, perform the following operations:

	Create bitmap0.

	Create a full drive backup of drive0.

	At a later point, issue incremental backups from bitmap0.

Note

As a consideration, if bitmap0 is created prior to the full
drive backup, incremental backups can still be authored from this
bitmap, but they will copy extra segments reflecting writes that
occurred prior to the backup operation. Transactions allow us to
narrow critical points in time to reduce waste, or, in the other
direction, to ensure that no segments are omitted.

Supported Bitmap Transactions

	block-dirty-bitmap-add

	block-dirty-bitmap-clear

	block-dirty-bitmap-enable

	block-dirty-bitmap-disable

	block-dirty-bitmap-merge

The usages for these commands are identical to their respective QMP commands,
but see the sections below for concrete examples.

Incremental Backups - Push Model

Incremental backups are simply partial disk images that can be combined with
other partial disk images on top of a base image to reconstruct a full backup
from the point in time at which the incremental backup was issued.

The “Push Model” here references the fact that QEMU is “pushing” the modified
blocks out to a destination. We will be using the drive-backup and blockdev-backup QMP commands to create both
full and incremental backups.

Both of these commands are jobs, which have their own QMP API for querying and
management documented in Background jobs.

Example: New Incremental Backup Anchor Point

As outlined in the Transactions - Justification section, perhaps we want to
create a new incremental backup chain attached to a drive.

This example creates a new, full backup of “drive0” and accompanies it with a
new, empty bitmap that records writes from this point in time forward.

Note

Any new writes that happen after this command is issued, even while
the backup job runs, will be written locally and not to the backup
destination. These writes will be recorded in the bitmap
accordingly.

-> {
 "execute": "transaction",
 "arguments": {
 "actions": [
 {
 "type": "block-dirty-bitmap-add",
 "data": {
 "node": "drive0",
 "name": "bitmap0"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "target": "/path/to/drive0.full.qcow2",
 "sync": "full",
 "format": "qcow2"
 }
 }
]
 }
 }

<- { "return": {} }

<- {
 "timestamp": {
 "seconds": 1555436945,
 "microseconds": 179620
 },
 "data": {
 "status": "created",
 "id": "drive0"
 },
 "event": "JOB_STATUS_CHANGE"
 }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

<- {
 "timestamp": {...},
 "data": {
 "status": "concluded",
 "id": "drive0"
 },
 "event": "JOB_STATUS_CHANGE"
 }

<- {
 "timestamp": {...},
 "data": {
 "status": "null",
 "id": "drive0"
 },
 "event": "JOB_STATUS_CHANGE"
 }

A full explanation of the job transition semantics and the JOB_STATUS_CHANGE
event are beyond the scope of this document and will be omitted in all
subsequent examples; above, several more events have been omitted for brevity.

Note

Subsequent examples will omit all events except BLOCK_JOB_COMPLETED
except where necessary to illustrate workflow differences.

Omitted events and json objects will be represented by ellipses:
...

Example: Resetting an Incremental Backup Anchor Point

If we want to start a new backup chain with an existing bitmap, we can also
use a transaction to reset the bitmap while making a new full backup:

-> {
 "execute": "transaction",
 "arguments": {
 "actions": [
 {
 "type": "block-dirty-bitmap-clear",
 "data": {
 "node": "drive0",
 "name": "bitmap0"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "target": "/path/to/drive0.new_full.qcow2",
 "sync": "full",
 "format": "qcow2"
 }
 }
]
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

The result of this example is identical to the first, but we clear an existing
bitmap instead of adding a new one.

Tip

In both of these examples, “bitmap0” is tied conceptually to the
creation of new, full backups. This relationship is not saved or
remembered by QEMU; it is up to the operator or management layer to
remember which bitmaps are associated with which backups.

Example: First Incremental Backup

	Create a full backup and sync it to a dirty bitmap using any method:

	Either of the two live backup method demonstrated above,

	Using QMP commands with the VM paused as in the Justification section,
or

	With the VM offline, manually copy the image and start the VM in a paused
state, careful to add a new bitmap before the VM begins execution.

Whichever method is chosen, let’s assume that at the end of this step:

	The full backup is named drive0.full.qcow2.

	The bitmap we created is named bitmap0, attached to drive0.

	Create a destination image for the incremental backup that utilizes the
full backup as a backing image.

	Let’s assume the new incremental image is named drive0.inc0.qcow2:

$ qemu-img create -f qcow2 drive0.inc0.qcow2 \
 -b drive0.full.qcow2 -F qcow2

	Issue an incremental backup command:

-> {
 "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "drive0.inc0.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

This copies any blocks modified since the full backup was created into the
drive0.inc0.qcow2 file. During the operation, bitmap0 is marked
+busy. If the operation is successful, bitmap0 will be cleared to
reflect the “incremental” backup regimen, which only copies out new changes
from each incremental backup.

Note

Any new writes that occur after the backup operation starts do not
get copied to the destination. The backup’s “point in time” is when
the backup starts, not when it ends. These writes are recorded in a
special bitmap that gets re-added to bitmap0 when the backup ends so
that the next incremental backup can copy them out.

Example: Second Incremental Backup

	Create a new destination image for the incremental backup that points to
the previous one, e.g.: drive0.inc1.qcow2

$ qemu-img create -f qcow2 drive0.inc1.qcow2 \
 -b drive0.inc0.qcow2 -F qcow2

	Issue a new incremental backup command. The only difference here is that we
have changed the target image below.

-> {
 "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "drive0.inc1.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

Because the first incremental backup from the previous example completed
successfully, bitmap0 was synchronized with drive0.inc0.qcow2. Here,
we use bitmap0 again to create a new incremental backup that targets the
previous one, creating a chain of three images:

Diagram

+-------------------+ +-------------------+ +-------------------+
| drive0.full.qcow2 |<--| drive0.inc0.qcow2 |<--| drive0.inc1.qcow2 |
+-------------------+ +-------------------+ +-------------------+

Each new incremental backup re-synchronizes the bitmap to the latest backup
authored, allowing a user to continue to “consume” it to create new backups on
top of an existing chain.

In the above diagram, neither drive0.inc1.qcow2 nor drive0.inc0.qcow2 are
complete images by themselves, but rely on their backing chain to reconstruct
a full image. The dependency terminates with each full backup.

Each backup in this chain remains independent, and is unchanged by new entries
made later in the chain. For instance, drive0.inc0.qcow2 remains a perfectly
valid backup of the disk as it was when that backup was issued.

Example: Incremental Push Backups without Backing Files

Backup images are best kept off-site, so we often will not have the preceding
backups in a chain available to link against. This is not a problem at backup
time; we simply do not set the backing image when creating the destination
image:

	Create a new destination image with no backing file set. We will need to
specify the size of the base image, because the backing file isn’t
available for QEMU to use to determine it.

$ qemu-img create -f qcow2 drive0.inc2.qcow2 64G

Note

Alternatively, you can omit mode: "existing" from the push
backup commands to have QEMU create an image without a backing
file for you, but you lose control over format options like
compatibility and preallocation presets.

	Issue a new incremental backup command. Apart from the new destination
image, there is no difference from the last two examples.

-> {
 "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "drive0.inc2.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

The only difference from the perspective of the user is that you will need to
set the backing image when attempting to restore the backup:

$ qemu-img rebase drive0.inc2.qcow2 \
 -u -b drive0.inc1.qcow2

This uses the “unsafe” rebase mode to simply set the backing file to a file
that isn’t present.

It is also possible to use --image-opts to specify the entire backing
chain by hand as an ephemeral property at runtime, but that is beyond the
scope of this document.

Example: Multi-drive Incremental Backup

Assume we have a VM with two drives, “drive0” and “drive1” and we wish to back
both of them up such that the two backups represent the same crash-consistent
point in time.

	For each drive, create an empty image:

$ qemu-img create -f qcow2 drive0.full.qcow2 64G
$ qemu-img create -f qcow2 drive1.full.qcow2 64G

	Create a full (anchor) backup for each drive, with accompanying bitmaps:

-> {
 "execute": "transaction",
 "arguments": {
 "actions": [
 {
 "type": "block-dirty-bitmap-add",
 "data": {
 "node": "drive0",
 "name": "bitmap0"
 }
 },
 {
 "type": "block-dirty-bitmap-add",
 "data": {
 "node": "drive1",
 "name": "bitmap0"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "target": "/path/to/drive0.full.qcow2",
 "sync": "full",
 "format": "qcow2"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive1",
 "target": "/path/to/drive1.full.qcow2",
 "sync": "full",
 "format": "qcow2"
 }
 }
]
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive1",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

	Later, create new destination images for each of the incremental backups
that point to their respective full backups:

$ qemu-img create -f qcow2 drive0.inc0.qcow2 \
 -b drive0.full.qcow2 -F qcow2
$ qemu-img create -f qcow2 drive1.inc0.qcow2 \
 -b drive1.full.qcow2 -F qcow2

	Issue a multi-drive incremental push backup transaction:

-> {
 "execute": "transaction",
 "arguments": {
 "actions": [
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive0.inc0.qcow2"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive1",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive1.inc0.qcow2"
 }
 },
]
 }
 }

<- { "return": {} }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

<- {
 "timestamp": {...},
 "data": {
 "device": "drive1",
 "type": "backup",
 "speed": 0,
 "len": 68719476736,
 "offset": 68719476736
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

...

Push Backup Errors & Recovery

In the event of an error that occurs after a push backup job is successfully
launched, either by an individual QMP command or a QMP transaction, the user
will receive a BLOCK_JOB_COMPLETE event with a failure message,
accompanied by a BLOCK_JOB_ERROR event.

In the case of a job being cancelled, the user will receive a
BLOCK_JOB_CANCELLED event instead of a pair of COMPLETE and ERROR
events.

In either failure case, the bitmap used for the failed operation is not
cleared. It will contain all of the dirty bits it did at the start of the
operation, plus any new bits that got marked during the operation.

Effectively, the “point in time” that a bitmap is recording differences
against is kept at the issuance of the last successful incremental backup,
instead of being moved forward to the start of this now-failed backup.

Once the underlying problem is addressed (e.g. more storage space is allocated
on the destination), the incremental backup command can be retried with the
same bitmap.

Example: Individual Failures

Incremental Push Backup jobs that fail individually behave simply as
described above. This example demonstrates the single-job failure case:

	Create a target image:

$ qemu-img create -f qcow2 drive0.inc0.qcow2 \
 -b drive0.full.qcow2 -F qcow2

	Attempt to create an incremental backup via QMP:

-> {
 "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "drive0.inc0.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
 }

<- { "return": {} }

	Receive a pair of events indicating failure:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "action": "report",
 "operation": "write"
 },
 "event": "BLOCK_JOB_ERROR"
 }

<- {
 "timestamp": {...},
 "data": {
 "speed": 0,
 "offset": 0,
 "len": 67108864,
 "error": "No space left on device",
 "device": "drive0",
 "type": "backup"
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

	Delete the failed image, and re-create it.

$ rm drive0.inc0.qcow2
$ qemu-img create -f qcow2 drive0.inc0.qcow2 \
 -b drive0.full.qcow2 -F qcow2

	Retry the command after fixing the underlying problem, such as
freeing up space on the backup volume:

-> {
 "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "drive0.inc0.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
 }

<- { "return": {} }

	Receive confirmation that the job completed successfully:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 67108864,
 "offset": 67108864
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

Example: Partial Transactional Failures

QMP commands like drive-backup
conceptually only start a job, and so transactions containing these commands
may succeed even if the job it created later fails. This might have surprising
interactions with notions of how a “transaction” ought to behave.

This distinction means that on occasion, a transaction containing such job
launching commands may appear to succeed and return success, but later
individual jobs associated with the transaction may fail. It is possible that
a management application may have to deal with a partial backup failure after
a “successful” transaction.

If multiple backup jobs are specified in a single transaction, if one of those
jobs fails, it will not interact with the other backup jobs in any way by
default. The job(s) that succeeded will clear the dirty bitmap associated with
the operation, but the job(s) that failed will not. It is therefore not safe
to delete any incremental backups that were created successfully in this
scenario, even though others failed.

This example illustrates a transaction with two backup jobs, where one fails
and one succeeds:

	Issue the transaction to start a backup of both drives.

-> {
 "execute": "transaction",
 "arguments": {
 "actions": [
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive0.inc0.qcow2"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive1",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive1.inc0.qcow2"
 }
 }]
 }
 }

	Receive notice that the Transaction was accepted, and jobs were
launched:

<- { "return": {} }

	Receive notice that the first job has completed:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 67108864,
 "offset": 67108864
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

	Receive notice that the second job has failed:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive1",
 "action": "report",
 "operation": "read"
 },
 "event": "BLOCK_JOB_ERROR"
 }

...

<- {
 "timestamp": {...},
 "data": {
 "speed": 0,
 "offset": 0,
 "len": 67108864,
 "error": "Input/output error",
 "device": "drive1",
 "type": "backup"
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

At the conclusion of the above example, drive0.inc0.qcow2 is valid and
must be kept, but drive1.inc0.qcow2 is incomplete and should be
deleted. If a VM-wide incremental backup of all drives at a point-in-time is
to be made, new backups for both drives will need to be made, taking into
account that a new incremental backup for drive0 needs to be based on top of
drive0.inc0.qcow2.

For this example, an incremental backup for drive0 was created, but not
for drive1. The last VM-wide crash-consistent backup that is available in
this case is the full backup:

[drive0.full.qcow2] <-- [drive0.inc0.qcow2]
[drive1.full.qcow2]

To repair this, issue a new incremental backup across both drives. The result
will be backup chains that resemble the following:

[drive0.full.qcow2] <-- [drive0.inc0.qcow2] <-- [drive0.inc1.qcow2]
[drive1.full.qcow2] <-------------------------- [drive1.inc1.qcow2]

Example: Grouped Completion Mode

While jobs launched by transactions normally complete or fail individually,
it’s possible to instruct them to complete or fail together as a group. QMP
transactions take an optional properties structure that can affect the
behavior of the transaction.

The completion-mode transaction property can be either individual
which is the default legacy behavior described above, or grouped, detailed
below.

In grouped completion mode, no jobs will report success until all jobs are
ready to report success. If any job fails, all other jobs will be cancelled.

Regardless of if a participating incremental backup job failed or was
cancelled, their associated bitmaps will all be held at their existing
points-in-time, as in individual failure cases.

Here’s the same multi-drive backup scenario from Example: Partial
Transactional Failures, but with the grouped completion-mode property
applied:

	Issue the multi-drive incremental backup transaction:

-> {
 "execute": "transaction",
 "arguments": {
 "properties": {
 "completion-mode": "grouped"
 },
 "actions": [
 {
 "type": "drive-backup",
 "data": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive0.inc0.qcow2"
 }
 },
 {
 "type": "drive-backup",
 "data": {
 "device": "drive1",
 "bitmap": "bitmap0",
 "format": "qcow2",
 "mode": "existing",
 "sync": "incremental",
 "target": "drive1.inc0.qcow2"
 }
 }]
 }
 }

	Receive notice that the Transaction was accepted, and jobs were launched:

<- { "return": {} }

	Receive notification that the backup job for drive1 has failed:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive1",
 "action": "report",
 "operation": "read"
 },
 "event": "BLOCK_JOB_ERROR"
 }

<- {
 "timestamp": {...},
 "data": {
 "speed": 0,
 "offset": 0,
 "len": 67108864,
 "error": "Input/output error",
 "device": "drive1",
 "type": "backup"
 },
 "event": "BLOCK_JOB_COMPLETED"
 }

	Receive notification that the job for drive0 has been cancelled:

<- {
 "timestamp": {...},
 "data": {
 "device": "drive0",
 "type": "backup",
 "speed": 0,
 "len": 67108864,
 "offset": 16777216
 },
 "event": "BLOCK_JOB_CANCELLED"
 }

At the conclusion of this example, both jobs have been aborted due to a
failure. Both destination images should be deleted and are no longer of use.

The transaction as a whole can simply be re-issued at a later time.

D-Bus

Introduction

	QEMU may be running with various helper processes involved:

	
	vhost-user* processes (gpu, virtfs, input, etc…)

	TPM emulation (or other devices)

	user networking (slirp)

	network services (DHCP/DNS, samba/ftp etc)

	background tasks (compression, streaming etc)

	client UI

	admin & cli

Having several processes allows stricter security rules, as well as
greater modularity.

While QEMU itself uses QMP as primary IPC (and Spice/VNC for remote
display), D-Bus is the de facto IPC of choice on Unix systems. The
wire format is machine friendly, good bindings exist for various
languages, and there are various tools available.

Using a bus, helper processes can discover and communicate with each
other easily, without going through QEMU. The bus topology is also
easier to apprehend and debug than a mesh. However, it is wise to
consider the security aspects of it.

Security

A QEMU D-Bus bus should be private to a single VM. Thus, only
cooperative tasks are running on the same bus to serve the VM.

D-Bus, the protocol and standard, doesn’t have mechanisms to enforce
security between peers once the connection is established. Peers may
have additional mechanisms to enforce security rules, based for
example on UNIX credentials.

The daemon can control which peers can send/recv messages using
various metadata attributes, however, this is alone is not generally
sufficient to make the deployment secure. The semantics of the actual
methods implemented using D-Bus are just as critical. Peers need to
carefully validate any information they received from a peer with a
different trust level.

dbus-daemon policy

dbus-daemon can enforce various policies based on the UID/GID of the
processes that are connected to it. It is thus a good idea to run
helpers as different UID from QEMU and set appropriate policies.

Depending on the use case, you may choose different scenarios:

	Everything the same UID

	Convenient for developers

	Improved reliability - crash of one part doens’t take
out entire VM

	No security benefit over traditional QEMU, unless additional
unless additional controls such as SELinux or AppArmor are
applied

	Two UIDs, one for QEMU, one for dbus & helpers

	Moderately improved user based security isolation

	Many UIDs, one for QEMU one for dbus and one for each helpers

	Best user based security isolation

	Complex to manager distinct UIDs needed for each VM

For example, to allow only qemu user to talk to qemu-helper
org.qemu.Helper1 service, a dbus-daemon policy may contain:

<policy user="qemu">
 <allow send_destination="org.qemu.Helper1"/>
 <allow receive_sender="org.qemu.Helper1"/>
</policy>

<policy user="qemu-helper">
 <allow own="org.qemu.Helper1"/>
</policy>

dbus-daemon can also perfom SELinux checks based on the security
context of the source and the target. For example, virtiofs_t
could be allowed to send a message to svirt_t, but virtiofs_t
wouldn’t be allowed to send a message to virtiofs_t.

See dbus-daemon man page for details.

Guidelines

When implementing new D-Bus interfaces, it is recommended to follow
the “D-Bus API Design Guidelines”:
https://dbus.freedesktop.org/doc/dbus-api-design.html

The “org.qemu.*” prefix is reserved for services implemented &
distributed by the QEMU project.

QEMU Interfaces

D-Bus VMState

D-Bus VMState

Introduction

The QEMU dbus-vmstate object’s aim is to migrate helpers’ data running
on a QEMU D-Bus bus. (refer to the D-Bus document for
some recommendations on D-Bus usage)

Upon migration, QEMU will go through the queue of
org.qemu.VMState1 D-Bus name owners and query their Id. It
must be unique among the helpers.

It will then save arbitrary data of each Id to be transferred in the
migration stream and restored/loaded at the corresponding destination
helper.

For now, the data amount to be transferred is arbitrarily limited to
1Mb. The state must be saved quickly (a fraction of a second). (D-Bus
imposes a time limit on reply anyway, and migration would fail if data
isn’t given quickly enough.)

dbus-vmstate object can be configured with the expected list of
helpers by setting its id-list property, with a comma-separated
Id list.

Interface

On object path /org/qemu/VMState1, the following
org.qemu.VMState1 interface should be implemented:

<interface name="org.qemu.VMState1">
 <property name="Id" type="s" access="read"/>
 <method name="Load">
 <arg type="ay" name="data" direction="in"/>
 </method>
 <method name="Save">
 <arg type="ay" name="data" direction="out"/>
 </method>
</interface>

“Id” property

A string that identifies the helper uniquely. (maximum 256 bytes
including terminating NUL byte)

Note

The helper ID namespace is a separate namespace. In particular, it is not
related to QEMU “id” used in -object/-device objects.

Load(in u8[] bytes) method

The method called on destination with the state to restore.

The helper may be initially started in a waiting state (with
an –incoming argument for example), and it may resume on success.

An error may be returned to the caller.

Save(out u8[] bytes) method

The method called on the source to get the current state to be
migrated. The helper should continue to run normally.

An error may be returned to the caller.

Live Block Device Operations

QEMU Block Layer currently (as of QEMU 2.9) supports four major kinds of
live block device jobs – stream, commit, mirror, and backup. These can
be used to manipulate disk image chains to accomplish certain tasks,
namely: live copy data from backing files into overlays; shorten long
disk image chains by merging data from overlays into backing files; live
synchronize data from a disk image chain (including current active disk)
to another target image; and point-in-time (and incremental) backups of
a block device. Below is a description of the said block (QMP)
primitives, and some (non-exhaustive list of) examples to illustrate
their use.

Note

The file qapi/block-core.json in the QEMU source tree has the
canonical QEMU API (QAPI) schema documentation for the QMP
primitives discussed here.

Contents

	Live Block Device Operations

	Disk image backing chain notation

	Brief overview of live block QMP primitives

	Interacting with a QEMU instance

	Example disk image chain

	A note on points-in-time vs file names

	Live block streaming — block-stream

	QMP invocation for block-stream

	Live block commit — block-commit

	QMP invocation for block-commit

	Live disk synchronization — drive-mirror and blockdev-mirror

	QMP invocation for drive-mirror

	QMP invocation for live storage migration with drive-mirror + NBD

	Notes on blockdev-mirror

	QMP invocation for blockdev-mirror

	Live disk backup — drive-backup and blockdev-backup

	QMP invocation for drive-backup

	Notes on blockdev-backup

	QMP invocation for blockdev-backup

Disk image backing chain notation

A simple disk image chain. (This can be created live using QMP
blockdev-snapshot-sync, or offline via qemu-img):

 (Live QEMU)
 |
 .
 V

 [A] <----- [B]

(backing file) (overlay)

The arrow can be read as: Image [A] is the backing file of disk image
[B]. And live QEMU is currently writing to image [B], consequently, it
is also referred to as the “active layer”.

There are two kinds of terminology that are common when referring to
files in a disk image backing chain:

	Directional: ‘base’ and ‘top’. Given the simple disk image chain
above, image [A] can be referred to as ‘base’, and image [B] as
‘top’. (This terminology can be seen in in QAPI schema file,
block-core.json.)

	Relational: ‘backing file’ and ‘overlay’. Again, taking the same
simple disk image chain from the above, disk image [A] is referred
to as the backing file, and image [B] as overlay.

Throughout this document, we will use the relational terminology.

Important

The overlay files can generally be any format that supports a
backing file, although QCOW2 is the preferred format and the one
used in this document.

Brief overview of live block QMP primitives

The following are the four different kinds of live block operations that
QEMU block layer supports.

	block-stream: Live copy of data from backing files into overlay
files.

Note

Once the ‘stream’ operation has finished, three things to
note:

	QEMU rewrites the backing chain to remove
reference to the now-streamed and redundant backing
file;

	the streamed file itself won’t be removed by QEMU,
and must be explicitly discarded by the user;

	the streamed file remains valid – i.e. further
overlays can be created based on it. Refer the
block-stream section further below for more
details.

	block-commit: Live merge of data from overlay files into backing
files (with the optional goal of removing the overlay file from the
chain). Since QEMU 2.0, this includes “active block-commit”
(i.e. merge the current active layer into the base image).

Note

Once the ‘commit’ operation has finished, there are three
things to note here as well:

	QEMU rewrites the backing chain to remove reference
to now-redundant overlay images that have been
committed into a backing file;

	the committed file itself won’t be removed by QEMU
– it ought to be manually removed;

	however, unlike in the case of block-stream, the
intermediate images will be rendered invalid – i.e.
no more further overlays can be created based on
them. Refer the block-commit section further
below for more details.

	drive-mirror (and blockdev-mirror): Synchronize a running
disk to another image.

	drive-backup (and blockdev-backup): Point-in-time (live) copy
of a block device to a destination.

Interacting with a QEMU instance

To show some example invocations of command-line, we will use the
following invocation of QEMU, with a QMP server running over UNIX
socket:

$./x86_64-softmmu/qemu-system-x86_64 -display none -no-user-config \
 -M q35 -nodefaults -m 512 \
 -blockdev node-name=node-A,driver=qcow2,file.driver=file,file.node-name=file,file.filename=./a.qcow2 \
 -device virtio-blk,drive=node-A,id=virtio0 \
 -monitor stdio -qmp unix:/tmp/qmp-sock,server,nowait

The -blockdev command-line option, used above, is available from
QEMU 2.9 onwards. In the above invocation, notice the node-name
parameter that is used to refer to the disk image a.qcow2 (‘node-A’) –
this is a cleaner way to refer to a disk image (as opposed to referring
to it by spelling out file paths). So, we will continue to designate a
node-name to each further disk image created (either via
blockdev-snapshot-sync, or blockdev-add) as part of the disk
image chain, and continue to refer to the disks using their
node-name (where possible, because block-commit does not yet, as
of QEMU 2.9, accept node-name parameter) when performing various
block operations.

To interact with the QEMU instance launched above, we will use the
qmp-shell utility (located at: qemu/scripts/qmp, as part of the
QEMU source directory), which takes key-value pairs for QMP commands.
Invoke it as below (which will also print out the complete raw JSON
syntax for reference – examples in the following sections):

$./qmp-shell -v -p /tmp/qmp-sock
(QEMU)

Note

In the event we have to repeat a certain QMP command, we will: for
the first occurrence of it, show the qmp-shell invocation, and
the corresponding raw JSON QMP syntax; but for subsequent
invocations, present just the qmp-shell syntax, and omit the
equivalent JSON output.

Example disk image chain

We will use the below disk image chain (and occasionally spelling it
out where appropriate) when discussing various primitives:

[A] <-- [B] <-- [C] <-- [D]

Where [A] is the original base image; [B] and [C] are intermediate
overlay images; image [D] is the active layer – i.e. live QEMU is
writing to it. (The rule of thumb is: live QEMU will always be pointing
to the rightmost image in a disk image chain.)

The above image chain can be created by invoking
blockdev-snapshot-sync commands as following (which shows the
creation of overlay image [B]) using the qmp-shell (our invocation
also prints the raw JSON invocation of it):

(QEMU) blockdev-snapshot-sync node-name=node-A snapshot-file=b.qcow2 snapshot-node-name=node-B format=qcow2
{
 "execute": "blockdev-snapshot-sync",
 "arguments": {
 "node-name": "node-A",
 "snapshot-file": "b.qcow2",
 "format": "qcow2",
 "snapshot-node-name": "node-B"
 }
}

Here, “node-A” is the name QEMU internally uses to refer to the base
image [A] – it is the backing file, based on which the overlay image,
[B], is created.

To create the rest of the overlay images, [C], and [D] (omitting the raw
JSON output for brevity):

(QEMU) blockdev-snapshot-sync node-name=node-B snapshot-file=c.qcow2 snapshot-node-name=node-C format=qcow2
(QEMU) blockdev-snapshot-sync node-name=node-C snapshot-file=d.qcow2 snapshot-node-name=node-D format=qcow2

A note on points-in-time vs file names

In our disk image chain:

[A] <-- [B] <-- [C] <-- [D]

We have three points in time and an active layer:

	Point 1: Guest state when [B] was created is contained in file [A]

	Point 2: Guest state when [C] was created is contained in [A] + [B]

	Point 3: Guest state when [D] was created is contained in
[A] + [B] + [C]

	Active layer: Current guest state is contained in [A] + [B] + [C] +
[D]

Therefore, be aware with naming choices:

	Naming a file after the time it is created is misleading – the
guest data for that point in time is not contained in that file
(as explained earlier)

	Rather, think of files as a delta from the backing file

Live block streaming — block-stream

The block-stream command allows you to do live copy data from backing
files into overlay images.

Given our original example disk image chain from earlier:

[A] <-- [B] <-- [C] <-- [D]

The disk image chain can be shortened in one of the following different
ways (not an exhaustive list).

	Merge everything into the active layer: I.e. copy all contents from
the base image, [A], and overlay images, [B] and [C], into [D],
while the guest is running. The resulting chain will be a
standalone image, [D] – with contents from [A], [B] and [C] merged
into it (where live QEMU writes go to):

[D]

	Taking the same example disk image chain mentioned earlier, merge
only images [B] and [C] into [D], the active layer. The result will
be contents of images [B] and [C] will be copied into [D], and the
backing file pointer of image [D] will be adjusted to point to image
[A]. The resulting chain will be:

[A] <-- [D]

	Intermediate streaming (available since QEMU 2.8): Starting afresh
with the original example disk image chain, with a total of four
images, it is possible to copy contents from image [B] into image
[C]. Once the copy is finished, image [B] can now be (optionally)
discarded; and the backing file pointer of image [C] will be
adjusted to point to [A]. I.e. after performing “intermediate
streaming” of [B] into [C], the resulting image chain will be (where
live QEMU is writing to [D]):

[A] <-- [C] <-- [D]

QMP invocation for block-stream

For Case-1, to merge contents of all the backing files into the
active layer, where ‘node-D’ is the current active image (by default
block-stream will flatten the entire chain); qmp-shell (and its
corresponding JSON output):

(QEMU) block-stream device=node-D job-id=job0
{
 "execute": "block-stream",
 "arguments": {
 "device": "node-D",
 "job-id": "job0"
 }
}

For Case-2, merge contents of the images [B] and [C] into [D], where
image [D] ends up referring to image [A] as its backing file:

(QEMU) block-stream device=node-D base-node=node-A job-id=job0

And for Case-3, of “intermediate” streaming”, merge contents of
images [B] into [C], where [C] ends up referring to [A] as its backing
image:

(QEMU) block-stream device=node-C base-node=node-A job-id=job0

Progress of a block-stream operation can be monitored via the QMP
command:

(QEMU) query-block-jobs
{
 "execute": "query-block-jobs",
 "arguments": {}
}

Once the block-stream operation has completed, QEMU will emit an
event, BLOCK_JOB_COMPLETED. The intermediate overlays remain valid,
and can now be (optionally) discarded, or retained to create further
overlays based on them. Finally, the block-stream jobs can be
restarted at anytime.

Live block commit — block-commit

The block-commit command lets you merge live data from overlay
images into backing file(s). Since QEMU 2.0, this includes “live active
commit” (i.e. it is possible to merge the “active layer”, the right-most
image in a disk image chain where live QEMU will be writing to, into the
base image). This is analogous to block-stream, but in the opposite
direction.

Again, starting afresh with our example disk image chain, where live
QEMU is writing to the right-most image in the chain, [D]:

[A] <-- [B] <-- [C] <-- [D]

The disk image chain can be shortened in one of the following ways:

	Commit content from only image [B] into image [A]. The resulting
chain is the following, where image [C] is adjusted to point at [A]
as its new backing file:

[A] <-- [C] <-- [D]

	Commit content from images [B] and [C] into image [A]. The
resulting chain, where image [D] is adjusted to point to image [A]
as its new backing file:

[A] <-- [D]

	Commit content from images [B], [C], and the active layer [D] into
image [A]. The resulting chain (in this case, a consolidated single
image):

[A]

	Commit content from image only image [C] into image [B]. The
resulting chain:

[A] <-- [B] <-- [D]

	Commit content from image [C] and the active layer [D] into image
[B]. The resulting chain:

[A] <-- [B]

QMP invocation for block-commit

For Case-1, to merge contents only from
image [B] into image [A], the invocation is as follows:

(QEMU) block-commit device=node-D base=a.qcow2 top=b.qcow2 job-id=job0
{
 "execute": "block-commit",
 "arguments": {
 "device": "node-D",
 "job-id": "job0",
 "top": "b.qcow2",
 "base": "a.qcow2"
 }
}

Once the above block-commit operation has completed, a
BLOCK_JOB_COMPLETED event will be issued, and no further action is
required. As the end result, the backing file of image [C] is adjusted
to point to image [A], and the original 4-image chain will end up being
transformed to:

[A] <-- [C] <-- [D]

Note

The intermediate image [B] is invalid (as in: no more further
overlays based on it can be created).

Reasoning: An intermediate image after a ‘stream’ operation still
represents that old point-in-time, and may be valid in that context.
However, an intermediate image after a ‘commit’ operation no longer
represents any point-in-time, and is invalid in any context.

However, Case-3 (also called: “active
block-commit”) is a two-phase operation: In the first phase, the
content from the active overlay, along with the intermediate overlays,
is copied into the backing file (also called the base image). In the
second phase, adjust the said backing file as the current active image
– possible via issuing the command block-job-complete. Optionally,
the block-commit operation can be cancelled by issuing the command
block-job-cancel, but be careful when doing this.

Once the block-commit operation has completed, the event
BLOCK_JOB_READY will be emitted, signalling that the synchronization
has finished. Now the job can be gracefully completed by issuing the
command block-job-complete – until such a command is issued, the
‘commit’ operation remains active.

The following is the flow for Case-3 to
convert a disk image chain such as this:

[A] <-- [B] <-- [C] <-- [D]

Into:

[A]

Where content from all the subsequent overlays, [B], and [C], including
the active layer, [D], is committed back to [A] – which is where live
QEMU is performing all its current writes).

Start the “active block-commit” operation:

(QEMU) block-commit device=node-D base=a.qcow2 top=d.qcow2 job-id=job0
{
 "execute": "block-commit",
 "arguments": {
 "device": "node-D",
 "job-id": "job0",
 "top": "d.qcow2",
 "base": "a.qcow2"
 }
}

Once the synchronization has completed, the event BLOCK_JOB_READY will
be emitted.

Then, optionally query for the status of the active block operations.
We can see the ‘commit’ job is now ready to be completed, as indicated
by the line “ready”: true:

(QEMU) query-block-jobs
{
 "execute": "query-block-jobs",
 "arguments": {}
}
{
 "return": [
 {
 "busy": false,
 "type": "commit",
 "len": 1376256,
 "paused": false,
 "ready": true,
 "io-status": "ok",
 "offset": 1376256,
 "device": "job0",
 "speed": 0
 }
]
}

Gracefully complete the ‘commit’ block device job:

(QEMU) block-job-complete device=job0
{
 "execute": "block-job-complete",
 "arguments": {
 "device": "job0"
 }
}
{
 "return": {}
}

Finally, once the above job is completed, an event
BLOCK_JOB_COMPLETED will be emitted.

Note

The invocation for rest of the cases (2, 4, and 5), discussed in the
previous section, is omitted for brevity.

Live disk synchronization — drive-mirror and blockdev-mirror

Synchronize a running disk image chain (all or part of it) to a target
image.

Again, given our familiar disk image chain:

[A] <-- [B] <-- [C] <-- [D]

The drive-mirror (and its newer equivalent blockdev-mirror)
allows you to copy data from the entire chain into a single target image
(which can be located on a different host), [E].

Note

When you cancel an in-progress ‘mirror’ job before the source and
target are synchronized, block-job-cancel will emit the event
BLOCK_JOB_CANCELLED. However, note that if you cancel a
‘mirror’ job after it has indicated (via the event
BLOCK_JOB_READY) that the source and target have reached
synchronization, then the event emitted by block-job-cancel
changes to BLOCK_JOB_COMPLETED.

Besides the ‘mirror’ job, the “active block-commit” is the only
other block device job that emits the event BLOCK_JOB_READY.
The rest of the block device jobs (‘stream’, “non-active
block-commit”, and ‘backup’) end automatically.

So there are two possible actions to take, after a ‘mirror’ job has
emitted the event BLOCK_JOB_READY, indicating that the source and
target have reached synchronization:

	Issuing the command block-job-cancel (after it emits the event
BLOCK_JOB_COMPLETED) will create a point-in-time (which is at
the time of triggering the cancel command) copy of the entire disk
image chain (or only the top-most image, depending on the sync
mode), contained in the target image [E]. One use case for this is
live VM migration with non-shared storage.

	Issuing the command block-job-complete (after it emits the event
BLOCK_JOB_COMPLETED) will adjust the guest device (i.e. live
QEMU) to point to the target image, [E], causing all the new writes
from this point on to happen there.

About synchronization modes: The synchronization mode determines
which part of the disk image chain will be copied to the target.
Currently, there are four different kinds:

	full – Synchronize the content of entire disk image chain to
the target

	top – Synchronize only the contents of the top-most disk image
in the chain to the target

	none – Synchronize only the new writes from this point on.

Note

In the case of drive-backup (or blockdev-backup),
the behavior of none synchronization mode is different.
Normally, a backup job consists of two parts: Anything
that is overwritten by the guest is first copied out to
the backup, and in the background the whole image is
copied from start to end. With sync=none, it’s only
the first part.

	incremental – Synchronize content that is described by the
dirty bitmap

Note

Refer to the Dirty Bitmaps and Incremental Backup document in the QEMU source
tree to learn about the detailed workings of the incremental
synchronization mode.

QMP invocation for drive-mirror

To copy the contents of the entire disk image chain, from [A] all the
way to [D], to a new target (drive-mirror will create the destination
file, if it doesn’t already exist), call it [E]:

(QEMU) drive-mirror device=node-D target=e.qcow2 sync=full job-id=job0
{
 "execute": "drive-mirror",
 "arguments": {
 "device": "node-D",
 "job-id": "job0",
 "target": "e.qcow2",
 "sync": "full"
 }
}

The "sync": "full", from the above, means: copy the entire chain
to the destination.

Following the above, querying for active block jobs will show that a
‘mirror’ job is “ready” to be completed (and QEMU will also emit an
event, BLOCK_JOB_READY):

(QEMU) query-block-jobs
{
 "execute": "query-block-jobs",
 "arguments": {}
}
{
 "return": [
 {
 "busy": false,
 "type": "mirror",
 "len": 21757952,
 "paused": false,
 "ready": true,
 "io-status": "ok",
 "offset": 21757952,
 "device": "job0",
 "speed": 0
 }
]
}

And, as noted in the previous section, there are two possible actions
at this point:

	Create a point-in-time snapshot by ending the synchronization. The
point-in-time is at the time of ending the sync. (The result of
the following being: the target image, [E], will be populated with
content from the entire chain, [A] to [D]):

(QEMU) block-job-cancel device=job0
{
 "execute": "block-job-cancel",
 "arguments": {
 "device": "job0"
 }
}

	Or, complete the operation and pivot the live QEMU to the target
copy:

(QEMU) block-job-complete device=job0

In either of the above cases, if you once again run the
query-block-jobs command, there should not be any active block
operation.

Comparing ‘commit’ and ‘mirror’: In both then cases, the overlay images
can be discarded. However, with ‘commit’, the existing base image
will be modified (by updating it with contents from overlays); while in
the case of ‘mirror’, a new target image is populated with the data
from the disk image chain.

QMP invocation for live storage migration with drive-mirror + NBD

Live storage migration (without shared storage setup) is one of the most
common use-cases that takes advantage of the drive-mirror primitive
and QEMU’s built-in Network Block Device (NBD) server. Here’s a quick
walk-through of this setup.

Given the disk image chain:

[A] <-- [B] <-- [C] <-- [D]

Instead of copying content from the entire chain, synchronize only the
contents of the top-most disk image (i.e. the active layer), [D], to a
target, say, [TargetDisk].

Important

The destination host must already have the contents of the backing
chain, involving images [A], [B], and [C], visible via other means
– whether by cp, rsync, or by some storage array-specific
command.)

Sometimes, this is also referred to as “shallow copy” – because only
the “active layer”, and not the rest of the image chain, is copied to
the destination.

Note

In this example, for the sake of simplicity, we’ll be using the same
localhost as both source and destination.

As noted earlier, on the destination host the contents of the backing
chain – from images [A] to [C] – are already expected to exist in some
form (e.g. in a file called, Contents-of-A-B-C.qcow2). Now, on the
destination host, let’s create a target overlay image (with the image
Contents-of-A-B-C.qcow2 as its backing file), to which the contents
of image [D] (from the source QEMU) will be mirrored to:

$ qemu-img create -f qcow2 -b ./Contents-of-A-B-C.qcow2 \
 -F qcow2 ./target-disk.qcow2

And start the destination QEMU (we already have the source QEMU running
– discussed in the section: Interacting with a QEMU instance)
instance, with the following invocation. (As noted earlier, for
simplicity’s sake, the destination QEMU is started on the same host, but
it could be located elsewhere):

$./x86_64-softmmu/qemu-system-x86_64 -display none -no-user-config \
 -M q35 -nodefaults -m 512 \
 -blockdev node-name=node-TargetDisk,driver=qcow2,file.driver=file,file.node-name=file,file.filename=./target-disk.qcow2 \
 -device virtio-blk,drive=node-TargetDisk,id=virtio0 \
 -S -monitor stdio -qmp unix:./qmp-sock2,server,nowait \
 -incoming tcp:localhost:6666

Given the disk image chain on source QEMU:

[A] <-- [B] <-- [C] <-- [D]

On the destination host, it is expected that the contents of the chain
[A] <-- [B] <-- [C] are already present, and therefore copy only
the content of image [D].

	[On destination QEMU] As part of the first step, start the
built-in NBD server on a given host (local host, represented by
::)and port:

(QEMU) nbd-server-start addr={"type":"inet","data":{"host":"::","port":"49153"}}
{
 "execute": "nbd-server-start",
 "arguments": {
 "addr": {
 "data": {
 "host": "::",
 "port": "49153"
 },
 "type": "inet"
 }
 }
}

	[On destination QEMU] And export the destination disk image using
QEMU’s built-in NBD server:

(QEMU) nbd-server-add device=node-TargetDisk writable=true
{
 "execute": "nbd-server-add",
 "arguments": {
 "device": "node-TargetDisk"
 }
}

	[On source QEMU] Then, invoke drive-mirror (NB: since we’re
running drive-mirror with mode=existing (meaning:
synchronize to a pre-created file, therefore ‘existing’, file on the
target host), with the synchronization mode as ‘top’ ("sync:
"top"):

(QEMU) drive-mirror device=node-D target=nbd:localhost:49153:exportname=node-TargetDisk sync=top mode=existing job-id=job0
{
 "execute": "drive-mirror",
 "arguments": {
 "device": "node-D",
 "mode": "existing",
 "job-id": "job0",
 "target": "nbd:localhost:49153:exportname=node-TargetDisk",
 "sync": "top"
 }
}

	[On source QEMU] Once drive-mirror copies the entire data, and the
event BLOCK_JOB_READY is emitted, issue block-job-cancel to
gracefully end the synchronization, from source QEMU:

(QEMU) block-job-cancel device=job0
{
 "execute": "block-job-cancel",
 "arguments": {
 "device": "job0"
 }
}

	[On destination QEMU] Then, stop the NBD server:

(QEMU) nbd-server-stop
{
 "execute": "nbd-server-stop",
 "arguments": {}
}

	[On destination QEMU] Finally, resume the guest vCPUs by issuing the
QMP command cont:

(QEMU) cont
{
 "execute": "cont",
 "arguments": {}
}

Note

Higher-level libraries (e.g. libvirt) automate the entire above
process (although note that libvirt does not allow same-host
migrations to localhost for other reasons).

Notes on blockdev-mirror

The blockdev-mirror command is equivalent in core functionality to
drive-mirror, except that it operates at node-level in a BDS graph.

Also: for blockdev-mirror, the ‘target’ image needs to be explicitly
created (using qemu-img) and attach it to live QEMU via
blockdev-add, which assigns a name to the to-be created target node.

E.g. the sequence of actions to create a point-in-time backup of an
entire disk image chain, to a target, using blockdev-mirror would be:

	Create the QCOW2 overlays, to arrive at a backing chain of desired
depth

	Create the target image (using qemu-img), say, e.qcow2

	Attach the above created file (e.qcow2), run-time, using
blockdev-add to QEMU

	Perform blockdev-mirror (use "sync": "full" to copy the
entire chain to the target). And notice the event
BLOCK_JOB_READY

	Optionally, query for active block jobs, there should be a ‘mirror’
job ready to be completed

	Gracefully complete the ‘mirror’ block device job, and notice the
the event BLOCK_JOB_COMPLETED

	Shutdown the guest by issuing the QMP quit command so that
caches are flushed

	Then, finally, compare the contents of the disk image chain, and
the target copy with qemu-img compare. You should notice:
“Images are identical”

QMP invocation for blockdev-mirror

Given the disk image chain:

[A] <-- [B] <-- [C] <-- [D]

To copy the contents of the entire disk image chain, from [A] all the
way to [D], to a new target, call it [E]. The following is the flow.

Create the overlay images, [B], [C], and [D]:

(QEMU) blockdev-snapshot-sync node-name=node-A snapshot-file=b.qcow2 snapshot-node-name=node-B format=qcow2
(QEMU) blockdev-snapshot-sync node-name=node-B snapshot-file=c.qcow2 snapshot-node-name=node-C format=qcow2
(QEMU) blockdev-snapshot-sync node-name=node-C snapshot-file=d.qcow2 snapshot-node-name=node-D format=qcow2

Create the target image, [E]:

$ qemu-img create -f qcow2 e.qcow2 39M

Add the above created target image to QEMU, via blockdev-add:

(QEMU) blockdev-add driver=qcow2 node-name=node-E file={"driver":"file","filename":"e.qcow2"}
{
 "execute": "blockdev-add",
 "arguments": {
 "node-name": "node-E",
 "driver": "qcow2",
 "file": {
 "driver": "file",
 "filename": "e.qcow2"
 }
 }
}

Perform blockdev-mirror, and notice the event BLOCK_JOB_READY:

(QEMU) blockdev-mirror device=node-B target=node-E sync=full job-id=job0
{
 "execute": "blockdev-mirror",
 "arguments": {
 "device": "node-D",
 "job-id": "job0",
 "target": "node-E",
 "sync": "full"
 }
}

Query for active block jobs, there should be a ‘mirror’ job ready:

(QEMU) query-block-jobs
{
 "execute": "query-block-jobs",
 "arguments": {}
}
{
 "return": [
 {
 "busy": false,
 "type": "mirror",
 "len": 21561344,
 "paused": false,
 "ready": true,
 "io-status": "ok",
 "offset": 21561344,
 "device": "job0",
 "speed": 0
 }
]
}

Gracefully complete the block device job operation, and notice the
event BLOCK_JOB_COMPLETED:

(QEMU) block-job-complete device=job0
{
 "execute": "block-job-complete",
 "arguments": {
 "device": "job0"
 }
}
{
 "return": {}
}

Shutdown the guest, by issuing the quit QMP command:

(QEMU) quit
{
 "execute": "quit",
 "arguments": {}
}

Live disk backup — drive-backup and blockdev-backup

The drive-backup (and its newer equivalent blockdev-backup) allows
you to create a point-in-time snapshot.

In this case, the point-in-time is when you start the drive-backup
(or its newer equivalent blockdev-backup) command.

QMP invocation for drive-backup

Yet again, starting afresh with our example disk image chain:

[A] <-- [B] <-- [C] <-- [D]

To create a target image [E], with content populated from image [A] to
[D], from the above chain, the following is the syntax. (If the target
image does not exist, drive-backup will create it):

(QEMU) drive-backup device=node-D sync=full target=e.qcow2 job-id=job0
{
 "execute": "drive-backup",
 "arguments": {
 "device": "node-D",
 "job-id": "job0",
 "sync": "full",
 "target": "e.qcow2"
 }
}

Once the above drive-backup has completed, a BLOCK_JOB_COMPLETED event
will be issued, indicating the live block device job operation has
completed, and no further action is required.

Notes on blockdev-backup

The blockdev-backup command is equivalent in functionality to
drive-backup, except that it operates at node-level in a Block Driver
State (BDS) graph.

E.g. the sequence of actions to create a point-in-time backup
of an entire disk image chain, to a target, using blockdev-backup
would be:

	Create the QCOW2 overlays, to arrive at a backing chain of desired
depth

	Create the target image (using qemu-img), say, e.qcow2

	Attach the above created file (e.qcow2), run-time, using
blockdev-add to QEMU

	Perform blockdev-backup (use "sync": "full" to copy the
entire chain to the target). And notice the event
BLOCK_JOB_COMPLETED

	Shutdown the guest, by issuing the QMP quit command, so that
caches are flushed

	Then, finally, compare the contents of the disk image chain, and
the target copy with qemu-img compare. You should notice:
“Images are identical”

The following section shows an example QMP invocation for
blockdev-backup.

QMP invocation for blockdev-backup

Given a disk image chain of depth 1 where image [B] is the active
overlay (live QEMU is writing to it):

[A] <-- [B]

The following is the procedure to copy the content from the entire chain
to a target image (say, [E]), which has the full content from [A] and
[B].

Create the overlay [B]:

(QEMU) blockdev-snapshot-sync node-name=node-A snapshot-file=b.qcow2 snapshot-node-name=node-B format=qcow2
{
 "execute": "blockdev-snapshot-sync",
 "arguments": {
 "node-name": "node-A",
 "snapshot-file": "b.qcow2",
 "format": "qcow2",
 "snapshot-node-name": "node-B"
 }
}

Create a target image that will contain the copy:

$ qemu-img create -f qcow2 e.qcow2 39M

Then add it to QEMU via blockdev-add:

(QEMU) blockdev-add driver=qcow2 node-name=node-E file={"driver":"file","filename":"e.qcow2"}
{
 "execute": "blockdev-add",
 "arguments": {
 "node-name": "node-E",
 "driver": "qcow2",
 "file": {
 "driver": "file",
 "filename": "e.qcow2"
 }
 }
}

Then invoke blockdev-backup to copy the contents from the entire
image chain, consisting of images [A] and [B] to the target image
‘e.qcow2’:

(QEMU) blockdev-backup device=node-B target=node-E sync=full job-id=job0
{
 "execute": "blockdev-backup",
 "arguments": {
 "device": "node-B",
 "job-id": "job0",
 "target": "node-E",
 "sync": "full"
 }
}

Once the above ‘backup’ operation has completed, the event,
BLOCK_JOB_COMPLETED will be emitted, signalling successful
completion.

Next, query for any active block device jobs (there should be none):

(QEMU) query-block-jobs
{
 "execute": "query-block-jobs",
 "arguments": {}
}

Shutdown the guest:

(QEMU) quit
{
 "execute": "quit",
 "arguments": {}
}
 "return": {}
}

Note

The above step is really important; if forgotten, an error, “Failed
to get shared “write” lock on e.qcow2”, will be thrown when you do
qemu-img compare to verify the integrity of the disk image
with the backup content.

The end result will be the image ‘e.qcow2’ containing a
point-in-time backup of the disk image chain – i.e. contents from
images [A] and [B] at the time the blockdev-backup command was
initiated.

One way to confirm the backup disk image contains the identical content
with the disk image chain is to compare the backup and the contents of
the chain, you should see “Images are identical”. (NB: this is assuming
QEMU was launched with -S option, which will not start the CPUs at
guest boot up):

$ qemu-img compare b.qcow2 e.qcow2
Warning: Image size mismatch!
Images are identical.

NOTE: The “Warning: Image size mismatch!” is expected, as we created the
target image (e.qcow2) with 39M size.

Persistent reservation helper protocol

QEMU’s SCSI passthrough devices, scsi-block and scsi-generic,
can delegate implementation of persistent reservations to an external
(and typically privileged) program. Persistent Reservations allow
restricting access to block devices to specific initiators in a shared
storage setup.

For a more detailed reference please refer to the SCSI Primary
Commands standard, specifically the section on Reservations and the
“PERSISTENT RESERVE IN” and “PERSISTENT RESERVE OUT” commands.

This document describes the socket protocol used between QEMU’s
pr-manager-helper object and the external program.

Contents

	Persistent reservation helper protocol

	Connection and initialization

	Command format

Connection and initialization

All data transmitted on the socket is big-endian.

After connecting to the helper program’s socket, the helper starts a simple
feature negotiation process by writing four bytes corresponding to
the features it exposes (supported_features). QEMU reads it,
then writes four bytes corresponding to the desired features of the
helper program (requested_features).

If a bit is 1 in requested_features and 0 in supported_features,
the corresponding feature is not supported by the helper and the connection
is closed. On the other hand, it is acceptable for a bit to be 0 in
requested_features and 1 in supported_features; in this case,
the helper will not enable the feature.

Right now no feature is defined, so the two parties always write four
zero bytes.

Command format

It is invalid to send multiple commands concurrently on the same
socket. It is however possible to connect multiple sockets to the
helper and send multiple commands to the helper for one or more
file descriptors.

A command consists of a request and a response. A request consists
of a 16-byte SCSI CDB. A file descriptor must be passed to the helper
together with the SCSI CDB using ancillary data.

The CDB has the following limitations:

	the command (stored in the first byte) must be one of 0x5E
(PERSISTENT RESERVE IN) or 0x5F (PERSISTENT RESERVE OUT).

	the allocation length (stored in bytes 7-8 of the CDB for PERSISTENT
RESERVE IN) or parameter list length (stored in bytes 5-8 of the CDB
for PERSISTENT RESERVE OUT) is limited to 8 KiB.

For PERSISTENT RESERVE OUT, the parameter list is sent right after the
CDB. The length of the parameter list is taken from the CDB itself.

The helper’s reply has the following structure:

	4 bytes for the SCSI status

	4 bytes for the payload size (nonzero only for PERSISTENT RESERVE IN
and only if the SCSI status is 0x00, i.e. GOOD)

	96 bytes for the SCSI sense data

	if the size is nonzero, the payload follows

The sense data is always sent to keep the protocol simple, even though
it is only valid if the SCSI status is CHECK CONDITION (0x02).

The payload size is always less than or equal to the allocation length
specified in the CDB for the PERSISTENT RESERVE IN command.

If the protocol is violated, the helper closes the socket.

QEMU Guest Agent

Synopsis

qemu-ga [OPTIONS]

Description

The QEMU Guest Agent is a daemon intended to be run within virtual
machines. It allows the hypervisor host to perform various operations
in the guest, such as:

	get information from the guest

	set the guest’s system time

	read/write a file

	sync and freeze the filesystems

	suspend the guest

	reconfigure guest local processors

	set user’s password

	…

qemu-ga will read a system configuration file on startup (located at
/etc/qemu/qemu-ga.conf by default), then parse remaining
configuration options on the command line. For the same key, the last
option wins, but the lists accumulate (see below for configuration
file format).

Options

	
-m, --method=METHOD

	Transport method: one of unix-listen, virtio-serial, or
isa-serial (virtio-serial is the default).

	
-p, --path=PATH

	Device/socket path (the default for virtio-serial is
/dev/virtio-ports/org.qemu.guest_agent.0,
the default for isa-serial is /dev/ttyS0)

	
-l, --logfile=PATH

	Set log file path (default is stderr).

	
-f, --pidfile=PATH

	Specify pid file (default is /var/run/qemu-ga.pid).

	
-F, --fsfreeze-hook=PATH

	Enable fsfreeze hook. Accepts an optional argument that specifies
script to run on freeze/thaw. Script will be called with
‘freeze’/’thaw’ arguments accordingly (default is
/etc/qemu/fsfreeze-hook). If using -F with an argument, do
not follow -F with a space (for example:
-F/var/run/fsfreezehook.sh).

	
-t, --statedir=PATH

	Specify the directory to store state information (absolute paths only,
default is /var/run).

	
-v, --verbose

	Log extra debugging information.

	
-V, --version

	Print version information and exit.

	
-d, --daemon

	Daemonize after startup (detach from terminal).

	
-b, --blacklist=LIST

	Comma-separated list of RPCs to disable (no spaces, ? to list
available RPCs).

	
-D, --dump-conf

	Dump the configuration in a format compatible with qemu-ga.conf
and exit.

	
-h, --help

	Display this help and exit.

Files

The syntax of the qemu-ga.conf configuration file follows the
Desktop Entry Specification, here is a quick summary: it consists of
groups of key-value pairs, interspersed with comments.

qemu-ga configuration sample
[general]
daemonize = 0
pidfile = /var/run/qemu-ga.pid
verbose = 0
method = virtio-serial
path = /dev/virtio-ports/org.qemu.guest_agent.0
statedir = /var/run

The list of keys follows the command line options:

	Key

	Key type

	daemon

	boolean

	method

	string

	path

	string

	logfile

	string

	pidfile

	string

	fsfreeze-hook

	string

	statedir

	string

	verbose

	boolean

	blacklist

	string list

See also

qemu(1)

Vhost-user Protocol

	Copyright

	2014 Virtual Open Systems Sarl.

	Copyright

	2019 Intel Corporation

	Licence

	This work is licensed under the terms of the GNU GPL,
version 2 or later. See the COPYING file in the top-level
directory.

Table of Contents

	Vhost-user Protocol

	Introduction

	Message Specification

	Header

	Payload

	A single 64-bit integer

	A vring state description

	A vring address description

	Memory regions description

	Log description

	An IOTLB message

	Virtio device config space

	Vring area description

	Inflight description

	C structure

	Communication

	Starting and stopping rings

	Multiple queue support

	Migration

	Memory access

	IOMMU support

	Slave communication

	Inflight I/O tracking

	In-band notifications

	Protocol features

	Master message types

	Slave message types

	VHOST_USER_PROTOCOL_F_REPLY_ACK

	Backend program conventions

	vhost-user-input

	vhost-user-gpu

	vhost-user-blk

Introduction

This protocol is aiming to complement the ioctl interface used to
control the vhost implementation in the Linux kernel. It implements
the control plane needed to establish virtqueue sharing with a user
space process on the same host. It uses communication over a Unix
domain socket to share file descriptors in the ancillary data of the
message.

The protocol defines 2 sides of the communication, master and
slave. Master is the application that shares its virtqueues, in
our case QEMU. Slave is the consumer of the virtqueues.

In the current implementation QEMU is the master, and the slave is
the external process consuming the virtio queues, for example a
software Ethernet switch running in user space, such as Snabbswitch,
or a block device backend processing read & write to a virtual
disk. In order to facilitate interoperability between various backend
implementations, it is recommended to follow the Backend program
conventions.

Master and slave can be either a client (i.e. connecting) or
server (listening) in the socket communication.

Message Specification

Note

All numbers are in the machine native byte order.

A vhost-user message consists of 3 header fields and a payload.

	request

	flags

	size

	payload

Header

	request

	32-bit type of the request

	flags

	32-bit bit field

	Lower 2 bits are the version (currently 0x01)

	Bit 2 is the reply flag - needs to be sent on each reply from the slave

	Bit 3 is the need_reply flag - see REPLY_ACK for
details.

	size

	32-bit size of the payload

Payload

Depending on the request type, payload can be:

A single 64-bit integer

	u64

	u64

	a 64-bit unsigned integer

A vring state description

	index

	num

	index

	a 32-bit index

	num

	a 32-bit number

A vring address description

	index

	flags

	size

	descriptor

	used

	available

	log

	index

	a 32-bit vring index

	flags

	a 32-bit vring flags

	descriptor

	a 64-bit ring address of the vring descriptor table

	used

	a 64-bit ring address of the vring used ring

	available

	a 64-bit ring address of the vring available ring

	log

	a 64-bit guest address for logging

Note that a ring address is an IOVA if VIRTIO_F_IOMMU_PLATFORM has
been negotiated. Otherwise it is a user address.

Memory regions description

	num regions

	padding

	region0

	…

	region7

	num regions

	a 32-bit number of regions

	padding

	32-bit

A region is:

	guest address

	size

	user address

	mmap offset

	guest address

	a 64-bit guest address of the region

	size

	a 64-bit size

	user address

	a 64-bit user address

	mmap offset

	64-bit offset where region starts in the mapped memory

Log description

	log size

	log offset

	log size

	size of area used for logging

	log offset

	offset from start of supplied file descriptor where
logging starts (i.e. where guest address 0 would be
logged)

An IOTLB message

	iova

	size

	user address

	permissions flags

	type

	iova

	a 64-bit I/O virtual address programmed by the guest

	size

	a 64-bit size

	user address

	a 64-bit user address

	permissions flags

	an 8-bit value:
- 0: No access
- 1: Read access
- 2: Write access
- 3: Read/Write access

	type

	an 8-bit IOTLB message type:
- 1: IOTLB miss
- 2: IOTLB update
- 3: IOTLB invalidate
- 4: IOTLB access fail

Virtio device config space

	offset

	size

	flags

	payload

	offset

	a 32-bit offset of virtio device’s configuration space

	size

	a 32-bit configuration space access size in bytes

	flags

	a 32-bit value:
- 0: Vhost master messages used for writeable fields
- 1: Vhost master messages used for live migration

	payload

	Size bytes array holding the contents of the virtio
device’s configuration space

Vring area description

	u64

	size

	offset

	u64

	a 64-bit integer contains vring index and flags

	size

	a 64-bit size of this area

	offset

	a 64-bit offset of this area from the start of the
supplied file descriptor

Inflight description

	mmap size

	mmap offset

	num queues

	queue size

	mmap size

	a 64-bit size of area to track inflight I/O

	mmap offset

	a 64-bit offset of this area from the start
of the supplied file descriptor

	num queues

	a 16-bit number of virtqueues

	queue size

	a 16-bit size of virtqueues

C structure

In QEMU the vhost-user message is implemented with the following struct:

typedef struct VhostUserMsg {
 VhostUserRequest request;
 uint32_t flags;
 uint32_t size;
 union {
 uint64_t u64;
 struct vhost_vring_state state;
 struct vhost_vring_addr addr;
 VhostUserMemory memory;
 VhostUserLog log;
 struct vhost_iotlb_msg iotlb;
 VhostUserConfig config;
 VhostUserVringArea area;
 VhostUserInflight inflight;
 };
} QEMU_PACKED VhostUserMsg;

Communication

The protocol for vhost-user is based on the existing implementation of
vhost for the Linux Kernel. Most messages that can be sent via the
Unix domain socket implementing vhost-user have an equivalent ioctl to
the kernel implementation.

The communication consists of master sending message requests and
slave sending message replies. Most of the requests don’t require
replies. Here is a list of the ones that do:

	VHOST_USER_GET_FEATURES

	VHOST_USER_GET_PROTOCOL_FEATURES

	VHOST_USER_GET_VRING_BASE

	VHOST_USER_SET_LOG_BASE (if VHOST_USER_PROTOCOL_F_LOG_SHMFD)

	VHOST_USER_GET_INFLIGHT_FD (if VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)

See also

	REPLY_ACK

	The section on REPLY_ACK protocol extension.

There are several messages that the master sends with file descriptors passed
in the ancillary data:

	VHOST_USER_SET_MEM_TABLE

	VHOST_USER_SET_LOG_BASE (if VHOST_USER_PROTOCOL_F_LOG_SHMFD)

	VHOST_USER_SET_LOG_FD

	VHOST_USER_SET_VRING_KICK

	VHOST_USER_SET_VRING_CALL

	VHOST_USER_SET_VRING_ERR

	VHOST_USER_SET_SLAVE_REQ_FD

	VHOST_USER_SET_INFLIGHT_FD (if VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)

If master is unable to send the full message or receives a wrong
reply it will close the connection. An optional reconnection mechanism
can be implemented.

If slave detects some error such as incompatible features, it may also
close the connection. This should only happen in exceptional circumstances.

Any protocol extensions are gated by protocol feature bits, which
allows full backwards compatibility on both master and slave. As
older slaves don’t support negotiating protocol features, a feature
bit was dedicated for this purpose:

#define VHOST_USER_F_PROTOCOL_FEATURES 30

Starting and stopping rings

Client must only process each ring when it is started.

Client must only pass data between the ring and the backend, when the
ring is enabled.

If ring is started but disabled, client must process the ring without
talking to the backend.

For example, for a networking device, in the disabled state client
must not supply any new RX packets, but must process and discard any
TX packets.

If VHOST_USER_F_PROTOCOL_FEATURES has not been negotiated, the
ring is initialized in an enabled state.

If VHOST_USER_F_PROTOCOL_FEATURES has been negotiated, the ring is
initialized in a disabled state. Client must not pass data to/from the
backend until ring is enabled by VHOST_USER_SET_VRING_ENABLE with
parameter 1, or after it has been disabled by
VHOST_USER_SET_VRING_ENABLE with parameter 0.

Each ring is initialized in a stopped state, client must not process
it until ring is started, or after it has been stopped.

Client must start ring upon receiving a kick (that is, detecting that
file descriptor is readable) on the descriptor specified by
VHOST_USER_SET_VRING_KICK or receiving the in-band message
VHOST_USER_VRING_KICK if negotiated, and stop ring upon receiving
VHOST_USER_GET_VRING_BASE.

While processing the rings (whether they are enabled or not), client
must support changing some configuration aspects on the fly.

Multiple queue support

Many devices have a fixed number of virtqueues. In this case the master
already knows the number of available virtqueues without communicating with the
slave.

Some devices do not have a fixed number of virtqueues. Instead the maximum
number of virtqueues is chosen by the slave. The number can depend on host
resource availability or slave implementation details. Such devices are called
multiple queue devices.

Multiple queue support allows the slave to advertise the maximum number of
queues. This is treated as a protocol extension, hence the slave has to
implement protocol features first. The multiple queues feature is supported
only when the protocol feature VHOST_USER_PROTOCOL_F_MQ (bit 0) is set.

The max number of queues the slave supports can be queried with message
VHOST_USER_GET_QUEUE_NUM. Master should stop when the number of requested
queues is bigger than that.

As all queues share one connection, the master uses a unique index for each
queue in the sent message to identify a specified queue.

The master enables queues by sending message VHOST_USER_SET_VRING_ENABLE.
vhost-user-net has historically automatically enabled the first queue pair.

Slaves should always implement the VHOST_USER_PROTOCOL_F_MQ protocol
feature, even for devices with a fixed number of virtqueues, since it is simple
to implement and offers a degree of introspection.

Masters must not rely on the VHOST_USER_PROTOCOL_F_MQ protocol feature for
devices with a fixed number of virtqueues. Only true multiqueue devices
require this protocol feature.

Migration

During live migration, the master may need to track the modifications
the slave makes to the memory mapped regions. The client should mark
the dirty pages in a log. Once it complies to this logging, it may
declare the VHOST_F_LOG_ALL vhost feature.

To start/stop logging of data/used ring writes, server may send
messages VHOST_USER_SET_FEATURES with VHOST_F_LOG_ALL and
VHOST_USER_SET_VRING_ADDR with VHOST_VRING_F_LOG in ring’s
flags set to 1/0, respectively.

All the modifications to memory pointed by vring “descriptor” should
be marked. Modifications to “used” vring should be marked if
VHOST_VRING_F_LOG is part of ring’s flags.

Dirty pages are of size:

#define VHOST_LOG_PAGE 0x1000

The log memory fd is provided in the ancillary data of
VHOST_USER_SET_LOG_BASE message when the slave has
VHOST_USER_PROTOCOL_F_LOG_SHMFD protocol feature.

The size of the log is supplied as part of VhostUserMsg which
should be large enough to cover all known guest addresses. Log starts
at the supplied offset in the supplied file descriptor. The log
covers from address 0 to the maximum of guest regions. In pseudo-code,
to mark page at addr as dirty:

page = addr / VHOST_LOG_PAGE
log[page / 8] |= 1 << page % 8

Where addr is the guest physical address.

Use atomic operations, as the log may be concurrently manipulated.

Note that when logging modifications to the used ring (when
VHOST_VRING_F_LOG is set for this ring), log_guest_addr should
be used to calculate the log offset: the write to first byte of the
used ring is logged at this offset from log start. Also note that this
value might be outside the legal guest physical address range
(i.e. does not have to be covered by the VhostUserMemory table), but
the bit offset of the last byte of the ring must fall within the size
supplied by VhostUserLog.

VHOST_USER_SET_LOG_FD is an optional message with an eventfd in
ancillary data, it may be used to inform the master that the log has
been modified.

Once the source has finished migration, rings will be stopped by the
source. No further update must be done before rings are restarted.

In postcopy migration the slave is started before all the memory has
been received from the source host, and care must be taken to avoid
accessing pages that have yet to be received. The slave opens a
‘userfault’-fd and registers the memory with it; this fd is then
passed back over to the master. The master services requests on the
userfaultfd for pages that are accessed and when the page is available
it performs WAKE ioctl’s on the userfaultfd to wake the stalled
slave. The client indicates support for this via the
VHOST_USER_PROTOCOL_F_PAGEFAULT feature.

Memory access

The master sends a list of vhost memory regions to the slave using the
VHOST_USER_SET_MEM_TABLE message. Each region has two base
addresses: a guest address and a user address.

Messages contain guest addresses and/or user addresses to reference locations
within the shared memory. The mapping of these addresses works as follows.

User addresses map to the vhost memory region containing that user address.

When the VIRTIO_F_IOMMU_PLATFORM feature has not been negotiated:

	Guest addresses map to the vhost memory region containing that guest
address.

When the VIRTIO_F_IOMMU_PLATFORM feature has been negotiated:

	Guest addresses are also called I/O virtual addresses (IOVAs). They are
translated to user addresses via the IOTLB.

	The vhost memory region guest address is not used.

IOMMU support

When the VIRTIO_F_IOMMU_PLATFORM feature has been negotiated, the
master sends IOTLB entries update & invalidation by sending
VHOST_USER_IOTLB_MSG requests to the slave with a struct
vhost_iotlb_msg as payload. For update events, the iotlb payload
has to be filled with the update message type (2), the I/O virtual
address, the size, the user virtual address, and the permissions
flags. Addresses and size must be within vhost memory regions set via
the VHOST_USER_SET_MEM_TABLE request. For invalidation events, the
iotlb payload has to be filled with the invalidation message type
(3), the I/O virtual address and the size. On success, the slave is
expected to reply with a zero payload, non-zero otherwise.

The slave relies on the slave communcation channel (see Slave
communication section below) to send IOTLB miss
and access failure events, by sending VHOST_USER_SLAVE_IOTLB_MSG
requests to the master with a struct vhost_iotlb_msg as
payload. For miss events, the iotlb payload has to be filled with the
miss message type (1), the I/O virtual address and the permissions
flags. For access failure event, the iotlb payload has to be filled
with the access failure message type (4), the I/O virtual address and
the permissions flags. For synchronization purpose, the slave may
rely on the reply-ack feature, so the master may send a reply when
operation is completed if the reply-ack feature is negotiated and
slaves requests a reply. For miss events, completed operation means
either master sent an update message containing the IOTLB entry
containing requested address and permission, or master sent nothing if
the IOTLB miss message is invalid (invalid IOVA or permission).

The master isn’t expected to take the initiative to send IOTLB update
messages, as the slave sends IOTLB miss messages for the guest virtual
memory areas it needs to access.

Slave communication

An optional communication channel is provided if the slave declares
VHOST_USER_PROTOCOL_F_SLAVE_REQ protocol feature, to allow the
slave to make requests to the master.

The fd is provided via VHOST_USER_SET_SLAVE_REQ_FD ancillary data.

A slave may then send VHOST_USER_SLAVE_* messages to the master
using this fd communication channel.

If VHOST_USER_PROTOCOL_F_SLAVE_SEND_FD protocol feature is
negotiated, slave can send file descriptors (at most 8 descriptors in
each message) to master via ancillary data using this fd communication
channel.

Inflight I/O tracking

To support reconnecting after restart or crash, slave may need to
resubmit inflight I/Os. If virtqueue is processed in order, we can
easily achieve that by getting the inflight descriptors from
descriptor table (split virtqueue) or descriptor ring (packed
virtqueue). However, it can’t work when we process descriptors
out-of-order because some entries which store the information of
inflight descriptors in available ring (split virtqueue) or descriptor
ring (packed virtqueue) might be overrided by new entries. To solve
this problem, slave need to allocate an extra buffer to store this
information of inflight descriptors and share it with master for
persistent. VHOST_USER_GET_INFLIGHT_FD and
VHOST_USER_SET_INFLIGHT_FD are used to transfer this buffer
between master and slave. And the format of this buffer is described
below:

	queue0 region

	queue1 region

	…

	queueN region

N is the number of available virtqueues. Slave could get it from num
queues field of VhostUserInflight.

For split virtqueue, queue region can be implemented as:

typedef struct DescStateSplit {
 /* Indicate whether this descriptor is inflight or not.
 * Only available for head-descriptor. */
 uint8_t inflight;

 /* Padding */
 uint8_t padding[5];

 /* Maintain a list for the last batch of used descriptors.
 * Only available when batching is used for submitting */
 uint16_t next;

 /* Used to preserve the order of fetching available descriptors.
 * Only available for head-descriptor. */
 uint64_t counter;
} DescStateSplit;

typedef struct QueueRegionSplit {
 /* The feature flags of this region. Now it's initialized to 0. */
 uint64_t features;

 /* The version of this region. It's 1 currently.
 * Zero value indicates an uninitialized buffer */
 uint16_t version;

 /* The size of DescStateSplit array. It's equal to the virtqueue
 * size. Slave could get it from queue size field of VhostUserInflight. */
 uint16_t desc_num;

 /* The head of list that track the last batch of used descriptors. */
 uint16_t last_batch_head;

 /* Store the idx value of used ring */
 uint16_t used_idx;

 /* Used to track the state of each descriptor in descriptor table */
 DescStateSplit desc[0];
} QueueRegionSplit;

To track inflight I/O, the queue region should be processed as follows:

When receiving available buffers from the driver:

	Get the next available head-descriptor index from available ring, i

	Set desc[i].counter to the value of global counter

	Increase global counter by 1

	Set desc[i].inflight to 1

When supplying used buffers to the driver:

	Get corresponding used head-descriptor index, i

	Set desc[i].next to last_batch_head

	Set last_batch_head to i

	Steps 1,2,3 may be performed repeatedly if batching is possible

	Increase the idx value of used ring by the size of the batch

	Set the inflight field of each DescStateSplit entry in the batch to 0

	Set used_idx to the idx value of used ring

When reconnecting:

	If the value of used_idx does not match the idx value of
used ring (means the inflight field of DescStateSplit entries in
last batch may be incorrect),

	Subtract the value of used_idx from the idx value of
used ring to get last batch size of DescStateSplit entries

	Set the inflight field of each DescStateSplit entry to 0 in last batch
list which starts from last_batch_head

	Set used_idx to the idx value of used ring

	Resubmit inflight DescStateSplit entries in order of their
counter value

For packed virtqueue, queue region can be implemented as:

typedef struct DescStatePacked {
 /* Indicate whether this descriptor is inflight or not.
 * Only available for head-descriptor. */
 uint8_t inflight;

 /* Padding */
 uint8_t padding;

 /* Link to the next free entry */
 uint16_t next;

 /* Link to the last entry of descriptor list.
 * Only available for head-descriptor. */
 uint16_t last;

 /* The length of descriptor list.
 * Only available for head-descriptor. */
 uint16_t num;

 /* Used to preserve the order of fetching available descriptors.
 * Only available for head-descriptor. */
 uint64_t counter;

 /* The buffer id */
 uint16_t id;

 /* The descriptor flags */
 uint16_t flags;

 /* The buffer length */
 uint32_t len;

 /* The buffer address */
 uint64_t addr;
} DescStatePacked;

typedef struct QueueRegionPacked {
 /* The feature flags of this region. Now it's initialized to 0. */
 uint64_t features;

 /* The version of this region. It's 1 currently.
 * Zero value indicates an uninitialized buffer */
 uint16_t version;

 /* The size of DescStatePacked array. It's equal to the virtqueue
 * size. Slave could get it from queue size field of VhostUserInflight. */
 uint16_t desc_num;

 /* The head of free DescStatePacked entry list */
 uint16_t free_head;

 /* The old head of free DescStatePacked entry list */
 uint16_t old_free_head;

 /* The used index of descriptor ring */
 uint16_t used_idx;

 /* The old used index of descriptor ring */
 uint16_t old_used_idx;

 /* Device ring wrap counter */
 uint8_t used_wrap_counter;

 /* The old device ring wrap counter */
 uint8_t old_used_wrap_counter;

 /* Padding */
 uint8_t padding[7];

 /* Used to track the state of each descriptor fetched from descriptor ring */
 DescStatePacked desc[0];
} QueueRegionPacked;

To track inflight I/O, the queue region should be processed as follows:

When receiving available buffers from the driver:

	Get the next available descriptor entry from descriptor ring, d

	If d is head descriptor,

	Set desc[old_free_head].num to 0

	Set desc[old_free_head].counter to the value of global counter

	Increase global counter by 1

	Set desc[old_free_head].inflight to 1

	If d is last descriptor, set desc[old_free_head].last to
free_head

	Increase desc[old_free_head].num by 1

	Set desc[free_head].addr, desc[free_head].len,
desc[free_head].flags, desc[free_head].id to d.addr,
d.len, d.flags, d.id

	Set free_head to desc[free_head].next

	If d is last descriptor, set old_free_head to free_head

When supplying used buffers to the driver:

	Get corresponding used head-descriptor entry from descriptor ring,
d

	Get corresponding DescStatePacked entry, e

	Set desc[e.last].next to free_head

	Set free_head to the index of e

	Steps 1,2,3,4 may be performed repeatedly if batching is possible

	Increase used_idx by the size of the batch and update
used_wrap_counter if needed

	Update d.flags

	Set the inflight field of each head DescStatePacked entry
in the batch to 0

	Set old_free_head, old_used_idx, old_used_wrap_counter
to free_head, used_idx, used_wrap_counter

When reconnecting:

	If used_idx does not match old_used_idx (means the
inflight field of DescStatePacked entries in last batch may
be incorrect),

	Get the next descriptor ring entry through old_used_idx, d

	Use old_used_wrap_counter to calculate the available flags

	If d.flags is not equal to the calculated flags value (means
slave has submitted the buffer to guest driver before crash, so
it has to commit the in-progres update), set old_free_head,
old_used_idx, old_used_wrap_counter to free_head,
used_idx, used_wrap_counter

	Set free_head, used_idx, used_wrap_counter to
old_free_head, old_used_idx, old_used_wrap_counter
(roll back any in-progress update)

	Set the inflight field of each DescStatePacked entry in
free list to 0

	Resubmit inflight DescStatePacked entries in order of their
counter value

In-band notifications

In some limited situations (e.g. for simulation) it is desirable to
have the kick, call and error (if used) signals done via in-band
messages instead of asynchronous eventfd notifications. This can be
done by negotiating the VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS
protocol feature.

Note that due to the fact that too many messages on the sockets can
cause the sending application(s) to block, it is not advised to use
this feature unless absolutely necessary. It is also considered an
error to negotiate this feature without also negotiating
VHOST_USER_PROTOCOL_F_SLAVE_REQ and VHOST_USER_PROTOCOL_F_REPLY_ACK,
the former is necessary for getting a message channel from the slave
to the master, while the latter needs to be used with the in-band
notification messages to block until they are processed, both to avoid
blocking later and for proper processing (at least in the simulation
use case.) As it has no other way of signalling this error, the slave
should close the connection as a response to a
VHOST_USER_SET_PROTOCOL_FEATURES message that sets the in-band
notifications feature flag without the other two.

Protocol features

#define VHOST_USER_PROTOCOL_F_MQ 0
#define VHOST_USER_PROTOCOL_F_LOG_SHMFD 1
#define VHOST_USER_PROTOCOL_F_RARP 2
#define VHOST_USER_PROTOCOL_F_REPLY_ACK 3
#define VHOST_USER_PROTOCOL_F_MTU 4
#define VHOST_USER_PROTOCOL_F_SLAVE_REQ 5
#define VHOST_USER_PROTOCOL_F_CROSS_ENDIAN 6
#define VHOST_USER_PROTOCOL_F_CRYPTO_SESSION 7
#define VHOST_USER_PROTOCOL_F_PAGEFAULT 8
#define VHOST_USER_PROTOCOL_F_CONFIG 9
#define VHOST_USER_PROTOCOL_F_SLAVE_SEND_FD 10
#define VHOST_USER_PROTOCOL_F_HOST_NOTIFIER 11
#define VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD 12
#define VHOST_USER_PROTOCOL_F_RESET_DEVICE 13
#define VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS 14

Master message types

	VHOST_USER_GET_FEATURES

	
	id

	1

	equivalent ioctl

	VHOST_GET_FEATURES

	master payload

	N/A

	slave payload

	u64

Get from the underlying vhost implementation the features bitmask.
Feature bit VHOST_USER_F_PROTOCOL_FEATURES signals slave support
for VHOST_USER_GET_PROTOCOL_FEATURES and
VHOST_USER_SET_PROTOCOL_FEATURES.

	VHOST_USER_SET_FEATURES

	
	id

	2

	equivalent ioctl

	VHOST_SET_FEATURES

	master payload

	u64

Enable features in the underlying vhost implementation using a
bitmask. Feature bit VHOST_USER_F_PROTOCOL_FEATURES signals
slave support for VHOST_USER_GET_PROTOCOL_FEATURES and
VHOST_USER_SET_PROTOCOL_FEATURES.

	VHOST_USER_GET_PROTOCOL_FEATURES

	
	id

	15

	equivalent ioctl

	VHOST_GET_FEATURES

	master payload

	N/A

	slave payload

	u64

Get the protocol feature bitmask from the underlying vhost
implementation. Only legal if feature bit
VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES.

Note

Slave that reported VHOST_USER_F_PROTOCOL_FEATURES must
support this message even before VHOST_USER_SET_FEATURES was
called.

	VHOST_USER_SET_PROTOCOL_FEATURES

	
	id

	16

	equivalent ioctl

	VHOST_SET_FEATURES

	master payload

	u64

Enable protocol features in the underlying vhost implementation.

Only legal if feature bit VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES.

Note

Slave that reported VHOST_USER_F_PROTOCOL_FEATURES must support
this message even before VHOST_USER_SET_FEATURES was called.

	VHOST_USER_SET_OWNER

	
	id

	3

	equivalent ioctl

	VHOST_SET_OWNER

	master payload

	N/A

Issued when a new connection is established. It sets the current
master as an owner of the session. This can be used on the slave
as a “session start” flag.

	VHOST_USER_RESET_OWNER

	
	id

	4

	master payload

	N/A

Deprecated

This is no longer used. Used to be sent to request disabling all
rings, but some clients interpreted it to also discard connection
state (this interpretation would lead to bugs). It is recommended
that clients either ignore this message, or use it to disable all
rings.

	VHOST_USER_SET_MEM_TABLE

	
	id

	5

	equivalent ioctl

	VHOST_SET_MEM_TABLE

	master payload

	memory regions description

	slave payload

	(postcopy only) memory regions description

Sets the memory map regions on the slave so it can translate the
vring addresses. In the ancillary data there is an array of file
descriptors for each memory mapped region. The size and ordering of
the fds matches the number and ordering of memory regions.

When VHOST_USER_POSTCOPY_LISTEN has been received,
SET_MEM_TABLE replies with the bases of the memory mapped
regions to the master. The slave must have mmap’d the regions but
not yet accessed them and should not yet generate a userfault
event.

Note

NEED_REPLY_MASK is not set in this case. QEMU will then
reply back to the list of mappings with an empty
VHOST_USER_SET_MEM_TABLE as an acknowledgement; only upon
reception of this message may the guest start accessing the memory
and generating faults.

	VHOST_USER_SET_LOG_BASE

	
	id

	6

	equivalent ioctl

	VHOST_SET_LOG_BASE

	master payload

	u64

	slave payload

	N/A

Sets logging shared memory space.

When slave has VHOST_USER_PROTOCOL_F_LOG_SHMFD protocol feature,
the log memory fd is provided in the ancillary data of
VHOST_USER_SET_LOG_BASE message, the size and offset of shared
memory area provided in the message.

	VHOST_USER_SET_LOG_FD

	
	id

	7

	equivalent ioctl

	VHOST_SET_LOG_FD

	master payload

	N/A

Sets the logging file descriptor, which is passed as ancillary data.

	VHOST_USER_SET_VRING_NUM

	
	id

	8

	equivalent ioctl

	VHOST_SET_VRING_NUM

	master payload

	vring state description

Set the size of the queue.

	VHOST_USER_SET_VRING_ADDR

	
	id

	9

	equivalent ioctl

	VHOST_SET_VRING_ADDR

	master payload

	vring address description

	slave payload

	N/A

Sets the addresses of the different aspects of the vring.

	VHOST_USER_SET_VRING_BASE

	
	id

	10

	equivalent ioctl

	VHOST_SET_VRING_BASE

	master payload

	vring state description

Sets the base offset in the available vring.

	VHOST_USER_GET_VRING_BASE

	
	id

	11

	equivalent ioctl

	VHOST_USER_GET_VRING_BASE

	master payload

	vring state description

	slave payload

	vring state description

Get the available vring base offset.

	VHOST_USER_SET_VRING_KICK

	
	id

	12

	equivalent ioctl

	VHOST_SET_VRING_KICK

	master payload

	u64

Set the event file descriptor for adding buffers to the vring. It is
passed in the ancillary data.

Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data. This signals that polling should be used
instead of waiting for the kick. Note that if the protocol feature
VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS has been negotiated
this message isn’t necessary as the ring is also started on the
VHOST_USER_VRING_KICK message, it may however still be used to
set an event file descriptor (which will be preferred over the
message) or to enable polling.

	VHOST_USER_SET_VRING_CALL

	
	id

	13

	equivalent ioctl

	VHOST_SET_VRING_CALL

	master payload

	u64

Set the event file descriptor to signal when buffers are used. It is
passed in the ancillary data.

Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data. This signals that polling will be used
instead of waiting for the call. Note that if the protocol features
VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS and
VHOST_USER_PROTOCOL_F_SLAVE_REQ have been negotiated this message
isn’t necessary as the VHOST_USER_SLAVE_VRING_CALL message can be
used, it may however still be used to set an event file descriptor
or to enable polling.

	VHOST_USER_SET_VRING_ERR

	
	id

	14

	equivalent ioctl

	VHOST_SET_VRING_ERR

	master payload

	u64

Set the event file descriptor to signal when error occurs. It is
passed in the ancillary data.

Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data. Note that if the protocol features
VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS and
VHOST_USER_PROTOCOL_F_SLAVE_REQ have been negotiated this message
isn’t necessary as the VHOST_USER_SLAVE_VRING_ERR message can be
used, it may however still be used to set an event file descriptor
(which will be preferred over the message).

	VHOST_USER_GET_QUEUE_NUM

	
	id

	17

	equivalent ioctl

	N/A

	master payload

	N/A

	slave payload

	u64

Query how many queues the backend supports.

This request should be sent only when VHOST_USER_PROTOCOL_F_MQ
is set in queried protocol features by
VHOST_USER_GET_PROTOCOL_FEATURES.

	VHOST_USER_SET_VRING_ENABLE

	
	id

	18

	equivalent ioctl

	N/A

	master payload

	vring state description

Signal slave to enable or disable corresponding vring.

This request should be sent only when
VHOST_USER_F_PROTOCOL_FEATURES has been negotiated.

	VHOST_USER_SEND_RARP

	
	id

	19

	equivalent ioctl

	N/A

	master payload

	u64

Ask vhost user backend to broadcast a fake RARP to notify the migration
is terminated for guest that does not support GUEST_ANNOUNCE.

Only legal if feature bit VHOST_USER_F_PROTOCOL_FEATURES is
present in VHOST_USER_GET_FEATURES and protocol feature bit
VHOST_USER_PROTOCOL_F_RARP is present in
VHOST_USER_GET_PROTOCOL_FEATURES. The first 6 bytes of the
payload contain the mac address of the guest to allow the vhost user
backend to construct and broadcast the fake RARP.

	VHOST_USER_NET_SET_MTU

	
	id

	20

	equivalent ioctl

	N/A

	master payload

	u64

Set host MTU value exposed to the guest.

This request should be sent only when VIRTIO_NET_F_MTU feature
has been successfully negotiated, VHOST_USER_F_PROTOCOL_FEATURES
is present in VHOST_USER_GET_FEATURES and protocol feature bit
VHOST_USER_PROTOCOL_F_NET_MTU is present in
VHOST_USER_GET_PROTOCOL_FEATURES.

If VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated, slave must
respond with zero in case the specified MTU is valid, or non-zero
otherwise.

	VHOST_USER_SET_SLAVE_REQ_FD

	
	id

	21

	equivalent ioctl

	N/A

	master payload

	N/A

Set the socket file descriptor for slave initiated requests. It is passed
in the ancillary data.

This request should be sent only when
VHOST_USER_F_PROTOCOL_FEATURES has been negotiated, and protocol
feature bit VHOST_USER_PROTOCOL_F_SLAVE_REQ bit is present in
VHOST_USER_GET_PROTOCOL_FEATURES. If
VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated, slave must
respond with zero for success, non-zero otherwise.

	VHOST_USER_IOTLB_MSG

	
	id

	22

	equivalent ioctl

	N/A (equivalent to VHOST_IOTLB_MSG message type)

	master payload

	struct vhost_iotlb_msg

	slave payload

	u64

Send IOTLB messages with struct vhost_iotlb_msg as payload.

Master sends such requests to update and invalidate entries in the
device IOTLB. The slave has to acknowledge the request with sending
zero as u64 payload for success, non-zero otherwise.

This request should be send only when VIRTIO_F_IOMMU_PLATFORM
feature has been successfully negotiated.

	VHOST_USER_SET_VRING_ENDIAN

	
	id

	23

	equivalent ioctl

	VHOST_SET_VRING_ENDIAN

	master payload

	vring state description

Set the endianness of a VQ for legacy devices. Little-endian is
indicated with state.num set to 0 and big-endian is indicated with
state.num set to 1. Other values are invalid.

This request should be sent only when
VHOST_USER_PROTOCOL_F_CROSS_ENDIAN has been negotiated.
Backends that negotiated this feature should handle both
endiannesses and expect this message once (per VQ) during device
configuration (ie. before the master starts the VQ).

	VHOST_USER_GET_CONFIG

	
	id

	24

	equivalent ioctl

	N/A

	master payload

	virtio device config space

	slave payload

	virtio device config space

When VHOST_USER_PROTOCOL_F_CONFIG is negotiated, this message is
submitted by the vhost-user master to fetch the contents of the
virtio device configuration space, vhost-user slave’s payload size
MUST match master’s request, vhost-user slave uses zero length of
payload to indicate an error to vhost-user master. The vhost-user
master may cache the contents to avoid repeated
VHOST_USER_GET_CONFIG calls.

	VHOST_USER_SET_CONFIG

	
	id

	25

	equivalent ioctl

	N/A

	master payload

	virtio device config space

	slave payload

	N/A

When VHOST_USER_PROTOCOL_F_CONFIG is negotiated, this message is
submitted by the vhost-user master when the Guest changes the virtio
device configuration space and also can be used for live migration
on the destination host. The vhost-user slave must check the flags
field, and slaves MUST NOT accept SET_CONFIG for read-only
configuration space fields unless the live migration bit is set.

	VHOST_USER_CREATE_CRYPTO_SESSION

	
	id

	26

	equivalent ioctl

	N/A

	master payload

	crypto session description

	slave payload

	crypto session description

Create a session for crypto operation. The server side must return
the session id, 0 or positive for success, negative for failure.
This request should be sent only when
VHOST_USER_PROTOCOL_F_CRYPTO_SESSION feature has been
successfully negotiated. It’s a required feature for crypto
devices.

	VHOST_USER_CLOSE_CRYPTO_SESSION

	
	id

	27

	equivalent ioctl

	N/A

	master payload

	u64

Close a session for crypto operation which was previously
created by VHOST_USER_CREATE_CRYPTO_SESSION.

This request should be sent only when
VHOST_USER_PROTOCOL_F_CRYPTO_SESSION feature has been
successfully negotiated. It’s a required feature for crypto
devices.

	VHOST_USER_POSTCOPY_ADVISE

	
	id

	28

	master payload

	N/A

	slave payload

	userfault fd

When VHOST_USER_PROTOCOL_F_PAGEFAULT is supported, the master
advises slave that a migration with postcopy enabled is underway,
the slave must open a userfaultfd for later use. Note that at this
stage the migration is still in precopy mode.

	VHOST_USER_POSTCOPY_LISTEN

	
	id

	29

	master payload

	N/A

Master advises slave that a transition to postcopy mode has
happened. The slave must ensure that shared memory is registered
with userfaultfd to cause faulting of non-present pages.

This is always sent sometime after a VHOST_USER_POSTCOPY_ADVISE,
and thus only when VHOST_USER_PROTOCOL_F_PAGEFAULT is supported.

	VHOST_USER_POSTCOPY_END

	
	id

	30

	slave payload

	u64

Master advises that postcopy migration has now completed. The slave
must disable the userfaultfd. The response is an acknowledgement
only.

When VHOST_USER_PROTOCOL_F_PAGEFAULT is supported, this message
is sent at the end of the migration, after
VHOST_USER_POSTCOPY_LISTEN was previously sent.

The value returned is an error indication; 0 is success.

	VHOST_USER_GET_INFLIGHT_FD

	
	id

	31

	equivalent ioctl

	N/A

	master payload

	inflight description

When VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD protocol feature has
been successfully negotiated, this message is submitted by master to
get a shared buffer from slave. The shared buffer will be used to
track inflight I/O by slave. QEMU should retrieve a new one when vm
reset.

	VHOST_USER_SET_INFLIGHT_FD

	
	id

	32

	equivalent ioctl

	N/A

	master payload

	inflight description

When VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD protocol feature has
been successfully negotiated, this message is submitted by master to
send the shared inflight buffer back to slave so that slave could
get inflight I/O after a crash or restart.

	VHOST_USER_GPU_SET_SOCKET

	
	id

	33

	equivalent ioctl

	N/A

	master payload

	N/A

Sets the GPU protocol socket file descriptor, which is passed as
ancillary data. The GPU protocol is used to inform the master of
rendering state and updates. See vhost-user-gpu.rst for details.

	VHOST_USER_RESET_DEVICE

	
	id

	34

	equivalent ioctl

	N/A

	master payload

	N/A

	slave payload

	N/A

Ask the vhost user backend to disable all rings and reset all
internal device state to the initial state, ready to be
reinitialized. The backend retains ownership of the device
throughout the reset operation.

Only valid if the VHOST_USER_PROTOCOL_F_RESET_DEVICE protocol
feature is set by the backend.

	VHOST_USER_VRING_KICK

	
	id

	35

	equivalent ioctl

	N/A

	slave payload

	vring state description

	master payload

	N/A

When the VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS protocol
feature has been successfully negotiated, this message may be
submitted by the master to indicate that a buffer was added to
the vring instead of signalling it using the vring’s kick file
descriptor or having the slave rely on polling.

The state.num field is currently reserved and must be set to 0.

Slave message types

	VHOST_USER_SLAVE_IOTLB_MSG

	
	id

	1

	equivalent ioctl

	N/A (equivalent to VHOST_IOTLB_MSG message type)

	slave payload

	struct vhost_iotlb_msg

	master payload

	N/A

Send IOTLB messages with struct vhost_iotlb_msg as payload.
Slave sends such requests to notify of an IOTLB miss, or an IOTLB
access failure. If VHOST_USER_PROTOCOL_F_REPLY_ACK is
negotiated, and slave set the VHOST_USER_NEED_REPLY flag, master
must respond with zero when operation is successfully completed, or
non-zero otherwise. This request should be send only when
VIRTIO_F_IOMMU_PLATFORM feature has been successfully
negotiated.

	VHOST_USER_SLAVE_CONFIG_CHANGE_MSG

	
	id

	2

	equivalent ioctl

	N/A

	slave payload

	N/A

	master payload

	N/A

When VHOST_USER_PROTOCOL_F_CONFIG is negotiated, vhost-user
slave sends such messages to notify that the virtio device’s
configuration space has changed, for those host devices which can
support such feature, host driver can send VHOST_USER_GET_CONFIG
message to slave to get the latest content. If
VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated, and slave set the
VHOST_USER_NEED_REPLY flag, master must respond with zero when
operation is successfully completed, or non-zero otherwise.

	VHOST_USER_SLAVE_VRING_HOST_NOTIFIER_MSG

	
	id

	3

	equivalent ioctl

	N/A

	slave payload

	vring area description

	master payload

	N/A

Sets host notifier for a specified queue. The queue index is
contained in the u64 field of the vring area description. The
host notifier is described by the file descriptor (typically it’s a
VFIO device fd) which is passed as ancillary data and the size
(which is mmap size and should be the same as host page size) and
offset (which is mmap offset) carried in the vring area
description. QEMU can mmap the file descriptor based on the size and
offset to get a memory range. Registering a host notifier means
mapping this memory range to the VM as the specified queue’s notify
MMIO region. Slave sends this request to tell QEMU to de-register
the existing notifier if any and register the new notifier if the
request is sent with a file descriptor.

This request should be sent only when
VHOST_USER_PROTOCOL_F_HOST_NOTIFIER protocol feature has been
successfully negotiated.

	VHOST_USER_SLAVE_VRING_CALL

	
	id

	4

	equivalent ioctl

	N/A

	slave payload

	vring state description

	master payload

	N/A

When the VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS protocol
feature has been successfully negotiated, this message may be
submitted by the slave to indicate that a buffer was used from
the vring instead of signalling this using the vring’s call file
descriptor or having the master relying on polling.

The state.num field is currently reserved and must be set to 0.

	VHOST_USER_SLAVE_VRING_ERR

	
	id

	5

	equivalent ioctl

	N/A

	slave payload

	vring state description

	master payload

	N/A

When the VHOST_USER_PROTOCOL_F_INBAND_NOTIFICATIONS protocol
feature has been successfully negotiated, this message may be
submitted by the slave to indicate that an error occurred on the
specific vring, instead of signalling the error file descriptor
set by the master via VHOST_USER_SET_VRING_ERR.

The state.num field is currently reserved and must be set to 0.

VHOST_USER_PROTOCOL_F_REPLY_ACK

The original vhost-user specification only demands replies for certain
commands. This differs from the vhost protocol implementation where
commands are sent over an ioctl() call and block until the client
has completed.

With this protocol extension negotiated, the sender (QEMU) can set the
need_reply [Bit 3] flag to any command. This indicates that the
client MUST respond with a Payload VhostUserMsg indicating success
or failure. The payload should be set to zero on success or non-zero
on failure, unless the message already has an explicit reply body.

The response payload gives QEMU a deterministic indication of the result
of the command. Today, QEMU is expected to terminate the main vhost-user
loop upon receiving such errors. In future, qemu could be taught to be more
resilient for selective requests.

For the message types that already solicit a reply from the client,
the presence of VHOST_USER_PROTOCOL_F_REPLY_ACK or need_reply bit
being set brings no behavioural change. (See the Communication
section for details.)

Backend program conventions

vhost-user backends can provide various devices & services and may
need to be configured manually depending on the use case. However, it
is a good idea to follow the conventions listed here when
possible. Users, QEMU or libvirt, can then rely on some common
behaviour to avoid heterogenous configuration and management of the
backend programs and facilitate interoperability.

Each backend installed on a host system should come with at least one
JSON file that conforms to the vhost-user.json schema. Each file
informs the management applications about the backend type, and binary
location. In addition, it defines rules for management apps for
picking the highest priority backend when multiple match the search
criteria (see @VhostUserBackend documentation in the schema file).

If the backend is not capable of enabling a requested feature on the
host (such as 3D acceleration with virgl), or the initialization
failed, the backend should fail to start early and exit with a status
!= 0. It may also print a message to stderr for further details.

The backend program must not daemonize itself, but it may be
daemonized by the management layer. It may also have a restricted
access to the system.

File descriptors 0, 1 and 2 will exist, and have regular
stdin/stdout/stderr usage (they may have been redirected to /dev/null
by the management layer, or to a log handler).

The backend program must end (as quickly and cleanly as possible) when
the SIGTERM signal is received. Eventually, it may receive SIGKILL by
the management layer after a few seconds.

The following command line options have an expected behaviour. They
are mandatory, unless explicitly said differently:

	--socket-path=PATH

	This option specify the location of the vhost-user Unix domain socket.
It is incompatible with –fd.

	--fd=FDNUM

	When this argument is given, the backend program is started with the
vhost-user socket as file descriptor FDNUM. It is incompatible with
–socket-path.

	--print-capabilities

	Output to stdout the backend capabilities in JSON format, and then
exit successfully. Other options and arguments should be ignored, and
the backend program should not perform its normal function. The
capabilities can be reported dynamically depending on the host
capabilities.

The JSON output is described in the vhost-user.json schema, by
`@VHostUserBackendCapabilities. Example:

{
 "type": "foo",
 "features": [
 "feature-a",
 "feature-b"
]
}

vhost-user-input

Command line options:

	--evdev-path=PATH

	Specify the linux input device.

(optional)

	--no-grab

	Do no request exclusive access to the input device.

(optional)

vhost-user-gpu

Command line options:

	--render-node=PATH

	Specify the GPU DRM render node.

(optional)

	--virgl

	Enable virgl rendering support.

(optional)

vhost-user-blk

Command line options:

	--blk-file=PATH

	Specify block device or file path.

(optional)

	--read-only

	Enable read-only.

(optional)

Vhost-user-gpu Protocol

	Licence

	This work is licensed under the terms of the GNU GPL,
version 2 or later. See the COPYING file in the top-level
directory.

Table of Contents

	Vhost-user-gpu Protocol

	Introduction

	Wire format

	Header

	Payload types

	VhostUserGpuCursorPos

	VhostUserGpuCursorUpdate

	VhostUserGpuScanout

	VhostUserGpuUpdate

	VhostUserGpuDMABUFScanout

	C structure

	Protocol features

	Communication

	Message types

Introduction

The vhost-user-gpu protocol is aiming at sharing the rendering result
of a virtio-gpu, done from a vhost-user slave process to a vhost-user
master process (such as QEMU). It bears a resemblance to a display
server protocol, if you consider QEMU as the display server and the
slave as the client, but in a very limited way. Typically, it will
work by setting a scanout/display configuration, before sending flush
events for the display updates. It will also update the cursor shape
and position.

The protocol is sent over a UNIX domain stream socket, since it uses
socket ancillary data to share opened file descriptors (DMABUF fds or
shared memory). The socket is usually obtained via
VHOST_USER_GPU_SET_SOCKET.

Requests are sent by the slave, and the optional replies by the
master.

Wire format

Unless specified differently, numbers are in the machine native byte
order.

A vhost-user-gpu message (request and reply) consists of 3 header
fields and a payload.

	request

	flags

	size

	payload

Header

	request

	u32, type of the request

	flags

	u32, 32-bit bit field:

	Bit 2 is the reply flag - needs to be set on each reply

	size

	u32, size of the payload

Payload types

Depending on the request type, payload can be:

VhostUserGpuCursorPos

	scanout-id

	x

	y

	scanout-id

	u32, the scanout where the cursor is located

	x/y

	u32, the cursor postion

VhostUserGpuCursorUpdate

	pos

	hot_x

	hot_y

	cursor

	pos

	a VhostUserGpuCursorPos, the cursor location

	hot_x/hot_y

	u32, the cursor hot location

	cursor

	[u32; 64 * 64], 64x64 RGBA cursor data (PIXMAN_a8r8g8b8 format)

VhostUserGpuScanout

	scanout-id

	w

	h

	scanout-id

	u32, the scanout configuration to set

	w/h

	u32, the scanout width/height size

VhostUserGpuUpdate

	scanout-id

	x

	y

	w

	h

	data

	scanout-id

	u32, the scanout content to update

	x/y/w/h

	u32, region of the update

	data

	RGB data (PIXMAN_x8r8g8b8 format)

VhostUserGpuDMABUFScanout

	scanout-id

	x

	y

	w

	h

	fdw

	fwh

	stride

	flags

	fourcc

	scanout-id

	u32, the scanout configuration to set

	x/y

	u32, the location of the scanout within the DMABUF

	w/h

	u32, the scanout width/height size

	fdw/fdh/stride/flags

	u32, the DMABUF width/height/stride/flags

	fourcc

	i32, the DMABUF fourcc

C structure

In QEMU the vhost-user-gpu message is implemented with the following struct:

typedef struct VhostUserGpuMsg {
 uint32_t request; /* VhostUserGpuRequest */
 uint32_t flags;
 uint32_t size; /* the following payload size */
 union {
 VhostUserGpuCursorPos cursor_pos;
 VhostUserGpuCursorUpdate cursor_update;
 VhostUserGpuScanout scanout;
 VhostUserGpuUpdate update;
 VhostUserGpuDMABUFScanout dmabuf_scanout;
 struct virtio_gpu_resp_display_info display_info;
 uint64_t u64;
 } payload;
} QEMU_PACKED VhostUserGpuMsg;

Protocol features

None yet.

As the protocol may need to evolve, new messages and communication
changes are negotiated thanks to preliminary
VHOST_USER_GPU_GET_PROTOCOL_FEATURES and
VHOST_USER_GPU_SET_PROTOCOL_FEATURES requests.

Communication

Message types

	VHOST_USER_GPU_GET_PROTOCOL_FEATURES

	
	id

	1

	request payload

	N/A

	reply payload

	u64

Get the supported protocol features bitmask.

	VHOST_USER_GPU_SET_PROTOCOL_FEATURES

	
	id

	2

	request payload

	u64

	reply payload

	N/A

Enable protocol features using a bitmask.

	VHOST_USER_GPU_GET_DISPLAY_INFO

	
	id

	3

	request payload

	N/A

	reply payload

	struct virtio_gpu_resp_display_info (from virtio specification)

Get the preferred display configuration.

	VHOST_USER_GPU_CURSOR_POS

	
	id

	4

	request payload

	VhostUserGpuCursorPos

	reply payload

	N/A

Set/show the cursor position.

	VHOST_USER_GPU_CURSOR_POS_HIDE

	
	id

	5

	request payload

	VhostUserGpuCursorPos

	reply payload

	N/A

Set/hide the cursor.

	VHOST_USER_GPU_CURSOR_UPDATE

	
	id

	6

	request payload

	VhostUserGpuCursorUpdate

	reply payload

	N/A

Update the cursor shape and location.

	VHOST_USER_GPU_SCANOUT

	
	id

	7

	request payload

	VhostUserGpuScanout

	reply payload

	N/A

Set the scanout resolution. To disable a scanout, the dimensions
width/height are set to 0.

	VHOST_USER_GPU_UPDATE

	
	id

	8

	request payload

	VhostUserGpuUpdate

	reply payload

	N/A

Update the scanout content. The data payload contains the graphical bits.
The display should be flushed and presented.

	VHOST_USER_GPU_DMABUF_SCANOUT

	
	id

	9

	request payload

	VhostUserGpuDMABUFScanout

	reply payload

	N/A

Set the scanout resolution/configuration, and share a DMABUF file
descriptor for the scanout content, which is passed as ancillary
data. To disable a scanout, the dimensions width/height are set
to 0, there is no file descriptor passed.

	VHOST_USER_GPU_DMABUF_UPDATE

	
	id

	10

	request payload

	VhostUserGpuUpdate

	reply payload

	empty payload

The display should be flushed and presented according to updated
region from VhostUserGpuUpdate.

Note: there is no data payload, since the scanout is shared thanks
to DMABUF, that must have been set previously with
VHOST_USER_GPU_DMABUF_SCANOUT.

QEMU Developer’s Guide

This manual documents various parts of the internals of QEMU.
You only need to read it if you are interested in reading or
modifying QEMU’s source code.

Contents:

	QEMU and Kconfig
	The Kconfig language

	Guidelines for writing Kconfig files

	Writing and modifying default configurations

	Kconfig.host

	Load and Store APIs
	ld*_p and st*_p

	cpu_{ld,st}*_mmuidx_ra

	cpu_{ld,st}*_data_ra

	cpu_{ld,st}*_data

	cpu_ld*_code

	translator_ld*

	helper_*_{ld,st}*_mmu

	address_space_*

	address_space_write_rom

	{ld,st}*_phys

	cpu_physical_memory_*

	cpu_memory_rw_debug

	dma_memory_*

	pci_dma_* and {ld,st}*_pci_dma

	The memory API
	Types of regions

	Migration

	Region names

	Region lifecycle

	Overlapping regions and priority

	Visibility

	Example memory map

	MMIO Operations

	API Reference

	Migration
	Transports

	Common infrastructure

	Saving the state of one device

	Stream structure

	Postcopy

	Firmware

	QEMU and the stable process
	QEMU stable releases

	What should go into a stable release?

	How to get a patch into QEMU stable

	Stable release process

	Testing in QEMU
	Testing with “make check”

	QEMU iotests

	Docker based tests

	VM testing

	Image fuzzer testing

	Acceptance tests using the Avocado Framework

	Testing with “make check-tcg”

	Decodetree Specification
	Fields

	Argument Sets

	Formats

	Patterns

	Pattern Groups

	Secure Coding Practices
	Reporting Security Bugs

	General Secure C Coding Practices

	Input Validation

	Unexpected Device Accesses

	Live Migration

	Guest Memory Access Races

	Translator Internals
	CPU state optimisations

	Direct block chaining

	Self-modifying code and translated code invalidation

	Exception support

	MMU emulation

	QEMU TCG Plugins
	API Stability

	Usage

	Plugin Life cycle

	Internals

	Bitwise operations

	Reset in QEMU: the Resettable interface
	Triggering reset

	Multi-phase mechanism

	Handling reset in a resettable object

	Base class handling of reset

	Booting from real channel-attached devices on s390x
	s390 hardware IPL

	How this all pertains to QEMU (and the kernel)

	What QEMU does

QEMU and Kconfig

QEMU is a very versatile emulator; it can be built for a variety of
targets, where each target can emulate various boards and at the same
time different targets can share large amounts of code. For example,
a POWER and an x86 board can run the same code to emulate a PCI network
card, even though the boards use different PCI host bridges, and they
can run the same code to emulate a SCSI disk while using different
SCSI adapters. ARM, s390 and x86 boards can all present a virtio-blk
disk to their guests, but with three different virtio guest interfaces.

Each QEMU target enables a subset of the boards, devices and buses that
are included in QEMU’s source code. As a result, each QEMU executable
only links a small subset of the files that form QEMU’s source code;
anything that is not needed to support a particular target is culled.

QEMU uses a simple domain-specific language to describe the dependencies
between components. This is useful for two reasons:

	new targets and boards can be added without knowing in detail the
architecture of the hardware emulation subsystems. Boards only have
to list the components they need, and the compiled executable will
include all the required dependencies and all the devices that the
user can add to that board;

	users can easily build reduced versions of QEMU that support only a subset
of boards or devices. For example, by default most targets will include
all emulated PCI devices that QEMU supports, but the build process is
configurable and it is easy to drop unnecessary (or otherwise unwanted)
code to make a leaner binary.

This domain-specific language is based on the Kconfig language that
originated in the Linux kernel, though it was heavily simplified and
the handling of dependencies is stricter in QEMU.

Unlike Linux, there is no user interface to edit the configuration, which
is instead specified in per-target files under the default-configs/
directory of the QEMU source tree. This is because, unlike Linux,
configuration and dependencies can be treated as a black box when building
QEMU; the default configuration that QEMU ships with should be okay in
almost all cases.

The Kconfig language

Kconfig defines configurable components in files named hw/*/Kconfig.
Note that configurable components are _not_ visible in C code as preprocessor
symbols; they are only visible in the Makefile. Each configurable component
defines a Makefile variable whose name starts with CONFIG_.

All elements have boolean (true/false) type; truth is written as y, while
falsehood is written n. They are defined in a Kconfig
stanza like the following:

config ARM_VIRT
 bool
 imply PCI_DEVICES
 imply VFIO_AMD_XGBE
 imply VFIO_XGMAC
 select A15MPCORE
 select ACPI
 select ARM_SMMUV3

The config keyword introduces a new configuration element. In the example
above, Makefiles will have access to a variable named CONFIG_ARM_VIRT,
with value y or n (respectively for boolean true and false).

Boolean expressions can be used within the language, whenever <expr>
is written in the remainder of this section. The &&, || and
! operators respectively denote conjunction (AND), disjunction (OR)
and negation (NOT).

The bool data type declaration is optional, but it is suggested to
include it for clarity and future-proofing. After bool the following
directives can be included:

dependencies: depends on <expr>

This defines a dependency for this configurable element. Dependencies
evaluate an expression and force the value of the variable to false
if the expression is false.

reverse dependencies: select <symbol> [if <expr>]

While depends on can force a symbol to false, reverse dependencies can
be used to force another symbol to true. In the following example,
CONFIG_BAZ will be true whenever CONFIG_FOO is true:

config FOO
 select BAZ

The optional expression will prevent select from having any effect
unless it is true.

Note that unlike Linux’s Kconfig implementation, QEMU will detect
contradictions between depends on and select statements and prevent
you from building such a configuration.

default value: default <value> [if <expr>]

Default values are assigned to the config symbol if no other value was
set by the user via default-configs/*.mak files, and only if
select or depends on directives do not force the value to true
or false respectively. <value> can be y or n; it cannot
be an arbitrary Boolean expression. However, a condition for applying
the default value can be added with if.

A configuration element can have any number of default values (usually,
if more than one default is present, they will have different
conditions). If multiple default values satisfy their condition,
only the first defined one is active.

reverse default (weak reverse dependency): imply <symbol> [if <expr>]

This is similar to select as it applies a lower limit of y
to another symbol. However, the lower limit is only a default
and the “implied” symbol’s value may still be set to n from a
default-configs/*.mak files. The following two examples are
equivalent:

config FOO
 bool
 imply BAZ

config BAZ
 bool
 default y if FOO

The next section explains where to use imply or default y.

Guidelines for writing Kconfig files

Configurable elements in QEMU fall under five broad groups. Each group
declares its dependencies in different ways:

subsystems, of which buses are a special case

Example:

config SCSI
 bool

Subsystems always default to false (they have no default directive)
and are never visible in default-configs/*.mak files. It’s
up to other symbols to select whatever subsystems they require.

They sometimes have select directives to bring in other required
subsystems or buses. For example, AUX (the DisplayPort auxiliary
channel “bus”) selects I2C because it can act as an I2C master too.

devices

Example:

config MEGASAS_SCSI_PCI
 bool
 default y if PCI_DEVICES
 depends on PCI
 select SCSI

Devices are the most complex of the five. They can have a variety
of directives that cooperate so that a default configuration includes
all the devices that can be accessed from QEMU.

Devices depend on the bus that they lie on, for example a PCI
device would specify depends on PCI. An MMIO device will likely
have no depends on directive. Devices also select the buses
that the device provides, for example a SCSI adapter would specify
select SCSI. Finally, devices are usually default y if and
only if they have at least one depends on; the default could be
conditional on a device group.

Devices also select any optional subsystem that they use; for example
a video card might specify select EDID if it needs to build EDID
information and publish it to the guest.

device groups

Example:

config PCI_DEVICES
 bool

Device groups provide a convenient mechanism to enable/disable many
devices in one go. This is useful when a set of devices is likely to
be enabled/disabled by several targets. Device groups usually need
no directive and are not used in the Makefile either; they only appear
as conditions for default y directives.

QEMU currently has two device groups, PCI_DEVICES and
TEST_DEVICES. PCI devices usually have a default y if
PCI_DEVICES directive rather than just default y. This lets
some boards (notably s390) easily support a subset of PCI devices,
for example only VFIO (passthrough) and virtio-pci devices.
TEST_DEVICES instead is used for devices that are rarely used on
production virtual machines, but provide useful hooks to test QEMU
or KVM.

boards

Example:

config SUN4M
 bool
 imply TCX
 imply CG3
 select CS4231
 select ECCMEMCTL
 select EMPTY_SLOT
 select ESCC
 select ESP
 select FDC
 select SLAVIO
 select LANCE
 select M48T59
 select STP2000

Boards specify their constituent devices using imply and select
directives. A device should be listed under select if the board
cannot be started at all without it. It should be listed under
imply if (depending on the QEMU command line) the board may or
may not be started without it. Boards also default to false; they are
enabled by the default-configs/*.mak for the target they apply to.

internal elements

Example:

config ECCMEMCTL
 bool
 select ECC

Internal elements group code that is useful in several boards or
devices. They are usually enabled with select and in turn select
other elements; they are never visible in default-configs/*.mak
files, and often not even in the Makefile.

Writing and modifying default configurations

In addition to the Kconfig files under hw/, each target also includes
a file called default-configs/TARGETNAME-softmmu.mak. These files
initialize some Kconfig variables to non-default values and provide the
starting point to turn on devices and subsystems.

A file in default-configs/ looks like the following example:

Default configuration for alpha-softmmu

Uncomment the following lines to disable these optional devices:
#
#CONFIG_PCI_DEVICES=n
#CONFIG_TEST_DEVICES=n

Boards:
#
CONFIG_DP264=y

The first part, consisting of commented-out =n assignments, tells
the user which devices or device groups are implied by the boards.
The second part, consisting of =y assignments, tells the user which
boards are supported by the target. The user will typically modify
the default configuration by uncommenting lines in the first group,
or commenting out lines in the second group.

It is also possible to run QEMU’s configure script with the
--without-default-devices option. When this is done, everything defaults
to n unless it is select``ed or explicitly switched on in the
``.mak files. In other words, default and imply directives
are disabled. When QEMU is built with this option, the user will probably
want to change some lines in the first group, for example like this:

CONFIG_PCI_DEVICES=y
#CONFIG_TEST_DEVICES=n

and/or pick a subset of the devices in those device groups. Right now
there is no single place that lists all the optional devices for
CONFIG_PCI_DEVICES and CONFIG_TEST_DEVICES. In the future,
we expect that .mak files will be automatically generated, so that
they will include all these symbols and some help text on what they do.

Kconfig.host

In some special cases, a configurable element depends on host features
that are detected by QEMU’s configure script; for example some devices
depend on the availability of KVM or on the presence of a library on
the host.

These symbols should be listed in Kconfig.host like this:

config KVM
 bool

and also listed as follows in the top-level Makefile’s MINIKCONF_ARGS
variable:

MINIKCONF_ARGS = \
 $@ $*/config-devices.mak.d $< $(MINIKCONF_INPUTS) \
 CONFIG_KVM=$(CONFIG_KVM) \
 CONFIG_SPICE=$(CONFIG_SPICE) \
 CONFIG_TPM=$(CONFIG_TPM) \
 ...

Load and Store APIs

QEMU internally has multiple families of functions for performing
loads and stores. This document attempts to enumerate them all
and indicate when to use them. It does not provide detailed
documentation of each API – for that you should look at the
documentation comments in the relevant header files.

ld*_p and st*_p

These functions operate on a host pointer, and should be used
when you already have a pointer into host memory (corresponding
to guest ram or a local buffer). They deal with doing accesses
with the desired endianness and with correctly handling
potentially unaligned pointer values.

Function names follow the pattern:

load: ld{type}{sign}{size}_{endian}_p(ptr)

store: st{type}{size}_{endian}_p(ptr, val)

	type

	
	(empty) : integer access

	f : float access

	sign

	
	(empty) : for 32 or 64 bit sizes (including floats and doubles)

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	endian

	
	he : host endian

	be : big endian

	le : little endian

The _{endian} infix is omitted for target-endian accesses.

The target endian accessors are only available to source
files which are built per-target.

There are also functions which take the size as an argument:

load: ldn{endian}_p(ptr, sz)

which performs an unsigned load of sz bytes from ptr
as an {endian} order value and returns it in a uint64_t.

store: stn{endian}_p(ptr, sz, val)

which stores val to ptr as an {endian} order value
of size sz bytes.

	Regexes for git grep

	
	\<ldf\?[us]\?[bwlq]\(_[hbl]e\)\?_p\>

	\<stf\?[bwlq]\(_[hbl]e\)\?_p\>

	\<ldn_\([hbl]e\)?_p\>

	\<stn_\([hbl]e\)?_p\>

cpu_{ld,st}*_mmuidx_ra

These functions operate on a guest virtual address plus a context,
known as a “mmu index” or mmuidx, which controls how that virtual
address is translated. The meaning of the indexes are target specific,
but specifying a particular index might be necessary if, for instance,
the helper requires an “always as non-privileged” access rather that
the default access for the current state of the guest CPU.

These functions may cause a guest CPU exception to be taken
(e.g. for an alignment fault or MMU fault) which will result in
guest CPU state being updated and control longjmp’ing out of the
function call. They should therefore only be used in code that is
implementing emulation of the guest CPU.

The retaddr parameter is used to control unwinding of the
guest CPU state in case of a guest CPU exception. This is passed
to cpu_restore_state(). Therefore the value should either be 0,
to indicate that the guest CPU state is already synchronized, or
the result of GETPC() from the top level HELPER(foo)
function, which is a return address into the generated code.

Function names follow the pattern:

load: cpu_ld{sign}{size}_mmuidx_ra(env, ptr, mmuidx, retaddr)

store: cpu_st{size}_mmuidx_ra(env, ptr, val, mmuidx, retaddr)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	Regexes for git grep:

	
	\<cpu_ld[us]\?[bwlq]_mmuidx_ra\>

	\<cpu_st[bwlq]_mmuidx_ra\>

cpu_{ld,st}*_data_ra

These functions work like the cpu_{ld,st}_mmuidx_ra functions
except that the mmuidx parameter is taken from the current mode
of the guest CPU, as determined by cpu_mmu_index(env, false).

These are generally the preferred way to do accesses by guest
virtual address from helper functions, unless the access should
be performed with a context other than the default.

Function names follow the pattern:

load: cpu_ld{sign}{size}_data_ra(env, ptr, ra)

store: cpu_st{size}_data_ra(env, ptr, val, ra)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	Regexes for git grep:

	
	\<cpu_ld[us]\?[bwlq]_data_ra\>

	\<cpu_st[bwlq]_data_ra\>

cpu_{ld,st}*_data

These functions work like the cpu_{ld,st}_data_ra functions
except that the retaddr parameter is 0, and thus does not
unwind guest CPU state.

This means they must only be used from helper functions where the
translator has saved all necessary CPU state. These functions are
the right choice for calls made from hooks like the CPU do_interrupt
hook or when you know for certain that the translator had to save all
the CPU state anyway.

Function names follow the pattern:

load: cpu_ld{sign}{size}_data(env, ptr)

store: cpu_st{size}_data(env, ptr, val)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	Regexes for git grep

	
	\<cpu_ld[us]\?[bwlq]_data\>

	\<cpu_st[bwlq]_data\+\>

cpu_ld*_code

These functions perform a read for instruction execution. The mmuidx
parameter is taken from the current mode of the guest CPU, as determined
by cpu_mmu_index(env, true). The retaddr parameter is 0, and
thus does not unwind guest CPU state, because CPU state is always
synchronized while translating instructions. Any guest CPU exception
that is raised will indicate an instruction execution fault rather than
a data read fault.

In general these functions should not be used directly during translation.
There are wrapper functions that are to be used which also take care of
plugins for tracing.

Function names follow the pattern:

load: cpu_ld{sign}{size}_code(env, ptr)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	Regexes for git grep:

	
	\<cpu_ld[us]\?[bwlq]_code\>

translator_ld*

These functions are a wrapper for cpu_ld*_code which also perform
any actions required by any tracing plugins. They are only to be
called during the translator callback translate_insn.

There is a set of functions ending in _swap which, if the parameter
is true, returns the value in the endianness that is the reverse of
the guest native endianness, as determined by TARGET_WORDS_BIGENDIAN.

Function names follow the pattern:

load: translator_ld{sign}{size}(env, ptr)

swap: translator_ld{sign}{size}_swap(env, ptr, swap)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	Regexes for git grep

	
	\<translator_ld[us]\?[bwlq]\(_swap\)\?\>

helper_*_{ld,st}*_mmu

These functions are intended primarily to be called by the code
generated by the TCG backend. They may also be called by target
CPU helper function code. Like the cpu_{ld,st}_mmuidx_ra functions
they perform accesses by guest virtual address, with a given mmuidx.

These functions specify an opindex parameter which encodes
(among other things) the mmu index to use for the access. This parameter
should be created by calling make_memop_idx().

The retaddr parameter should be the result of GETPC() called directly
from the top level HELPER(foo) function (or 0 if no guest CPU state
unwinding is required).

TODO The names of these functions are a bit odd for historical
reasons because they were originally expected to be called only from
within generated code. We should rename them to bring them more in
line with the other memory access functions. The explicit endianness
is the only feature they have beyond *_mmuidx_ra.

load: helper_{endian}_ld{sign}{size}_mmu(env, addr, opindex, retaddr)

store: helper_{endian}_st{size}_mmu(env, addr, val, opindex, retaddr)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

	s : signed

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	endian

	
	le : little endian

	be : big endian

	ret : target endianness

	Regexes for git grep

	
	\<helper_\(le\|be\|ret\)_ld[us]\?[bwlq]_mmu\>

	\<helper_\(le\|be\|ret\)_st[bwlq]_mmu\>

address_space_*

These functions are the primary ones to use when emulating CPU
or device memory accesses. They take an AddressSpace, which is the
way QEMU defines the view of memory that a device or CPU has.
(They generally correspond to being the “master” end of a hardware bus
or bus fabric.)

Each CPU has an AddressSpace. Some kinds of CPU have more than
one AddressSpace (for instance ARM guest CPUs have an AddressSpace
for the Secure world and one for NonSecure if they implement TrustZone).
Devices which can do DMA-type operations should generally have an
AddressSpace. There is also a “system address space” which typically
has all the devices and memory that all CPUs can see. (Some older
device models use the “system address space” rather than properly
modelling that they have an AddressSpace of their own.)

Functions are provided for doing byte-buffer reads and writes,
and also for doing one-data-item loads and stores.

In all cases the caller provides a MemTxAttrs to specify bus
transaction attributes, and can check whether the memory transaction
succeeded using a MemTxResult return code.

address_space_read(address_space, addr, attrs, buf, len)

address_space_write(address_space, addr, attrs, buf, len)

address_space_rw(address_space, addr, attrs, buf, len, is_write)

address_space_ld{sign}{size}_{endian}(address_space, addr, attrs, txresult)

address_space_st{size}_{endian}(address_space, addr, val, attrs, txresult)

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

(No signed load operations are provided.)

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	endian

	
	le : little endian

	be : big endian

The _{endian} suffix is omitted for byte accesses.

	Regexes for git grep

	
	\<address_space_\(read\|write\|rw\)\>

	\<address_space_ldu\?[bwql]\(_[lb]e\)\?\>

	\<address_space_st[bwql]\(_[lb]e\)\?\>

address_space_write_rom

This function performs a write by physical address like
address_space_write, except that if the write is to a ROM then
the ROM contents will be modified, even though a write by the guest
CPU to the ROM would be ignored. This is used for non-guest writes
like writes from the gdb debug stub or initial loading of ROM contents.

Note that portions of the write which attempt to write data to a
device will be silently ignored – only real RAM and ROM will
be written to.

	Regexes for git grep

	
	address_space_write_rom

{ld,st}*_phys

These are functions which are identical to
address_space_{ld,st}*, except that they always pass
MEMTXATTRS_UNSPECIFIED for the transaction attributes, and ignore
whether the transaction succeeded or failed.

The fact that they ignore whether the transaction succeeded means
they should not be used in new code, unless you know for certain
that your code will only be used in a context where the CPU or
device doing the access has no way to report such an error.

load: ld{sign}{size}_{endian}_phys

store: st{size}_{endian}_phys

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

(No signed load operations are provided.)

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	endian

	
	le : little endian

	be : big endian

The _{endian}_ infix is omitted for byte accesses.

	Regexes for git grep

	
	\<ldu\?[bwlq]\(_[bl]e\)\?_phys\>

	\<st[bwlq]\(_[bl]e\)\?_phys\>

cpu_physical_memory_*

These are convenience functions which are identical to
address_space_* but operate specifically on the system address space,
always pass a MEMTXATTRS_UNSPECIFIED set of memory attributes and
ignore whether the memory transaction succeeded or failed.
For new code they are better avoided:

	there is likely to be behaviour you need to model correctly for a
failed read or write operation

	a device should usually perform operations on its own AddressSpace
rather than using the system address space

cpu_physical_memory_read

cpu_physical_memory_write

cpu_physical_memory_rw

	Regexes for git grep

	
	\<cpu_physical_memory_\(read\|write\|rw\)\>

cpu_memory_rw_debug

Access CPU memory by virtual address for debug purposes.

This function is intended for use by the GDB stub and similar code.
It takes a virtual address, converts it to a physical address via
an MMU lookup using the current settings of the specified CPU,
and then performs the access (using address_space_rw for
reads or cpu_physical_memory_write_rom for writes).
This means that if the access is a write to a ROM then this
function will modify the contents (whereas a normal guest CPU access
would ignore the write attempt).

cpu_memory_rw_debug

dma_memory_*

These behave like address_space_*, except that they perform a DMA
barrier operation first.

TODO: We should provide guidance on when you need the DMA
barrier operation and when it’s OK to use address_space_*, and
make sure our existing code is doing things correctly.

dma_memory_read

dma_memory_write

dma_memory_rw

	Regexes for git grep

	
	\<dma_memory_\(read\|write\|rw\)\>

pci_dma_* and {ld,st}*_pci_dma

These functions are specifically for PCI device models which need to
perform accesses where the PCI device is a bus master. You pass them a
PCIDevice * and they will do dma_memory_* operations on the
correct address space for that device.

pci_dma_read

pci_dma_write

pci_dma_rw

load: ld{sign}{size}_{endian}_pci_dma

store: st{size}_{endian}_pci_dma

	sign

	
	(empty) : for 32 or 64 bit sizes

	u : unsigned

(No signed load operations are provided.)

	size

	
	b : 8 bits

	w : 16 bits

	l : 32 bits

	q : 64 bits

	endian

	
	le : little endian

	be : big endian

The _{endian}_ infix is omitted for byte accesses.

	Regexes for git grep

	
	\<pci_dma_\(read\|write\|rw\)\>

	\<ldu\?[bwlq]\(_[bl]e\)\?_pci_dma\>

	\<st[bwlq]\(_[bl]e\)\?_pci_dma\>

The memory API

The memory API models the memory and I/O buses and controllers of a QEMU
machine. It attempts to allow modelling of:

	ordinary RAM

	memory-mapped I/O (MMIO)

	memory controllers that can dynamically reroute physical memory regions
to different destinations

The memory model provides support for

	tracking RAM changes by the guest

	setting up coalesced memory for kvm

	setting up ioeventfd regions for kvm

Memory is modelled as an acyclic graph of MemoryRegion objects. Sinks
(leaves) are RAM and MMIO regions, while other nodes represent
buses, memory controllers, and memory regions that have been rerouted.

In addition to MemoryRegion objects, the memory API provides AddressSpace
objects for every root and possibly for intermediate MemoryRegions too.
These represent memory as seen from the CPU or a device’s viewpoint.

Types of regions

There are multiple types of memory regions (all represented by a single C type
MemoryRegion):

	RAM: a RAM region is simply a range of host memory that can be made available
to the guest.
You typically initialize these with memory_region_init_ram(). Some special
purposes require the variants memory_region_init_resizeable_ram(),
memory_region_init_ram_from_file(), or memory_region_init_ram_ptr().

	MMIO: a range of guest memory that is implemented by host callbacks;
each read or write causes a callback to be called on the host.
You initialize these with memory_region_init_io(), passing it a
MemoryRegionOps structure describing the callbacks.

	ROM: a ROM memory region works like RAM for reads (directly accessing
a region of host memory), and forbids writes. You initialize these with
memory_region_init_rom().

	ROM device: a ROM device memory region works like RAM for reads
(directly accessing a region of host memory), but like MMIO for
writes (invoking a callback). You initialize these with
memory_region_init_rom_device().

	IOMMU region: an IOMMU region translates addresses of accesses made to it
and forwards them to some other target memory region. As the name suggests,
these are only needed for modelling an IOMMU, not for simple devices.
You initialize these with memory_region_init_iommu().

	container: a container simply includes other memory regions, each at
a different offset. Containers are useful for grouping several regions
into one unit. For example, a PCI BAR may be composed of a RAM region
and an MMIO region.

A container’s subregions are usually non-overlapping. In some cases it is
useful to have overlapping regions; for example a memory controller that
can overlay a subregion of RAM with MMIO or ROM, or a PCI controller
that does not prevent card from claiming overlapping BARs.

You initialize a pure container with memory_region_init().

	alias: a subsection of another region. Aliases allow a region to be
split apart into discontiguous regions. Examples of uses are memory banks
used when the guest address space is smaller than the amount of RAM
addressed, or a memory controller that splits main memory to expose a “PCI
hole”. Aliases may point to any type of region, including other aliases,
but an alias may not point back to itself, directly or indirectly.
You initialize these with memory_region_init_alias().

	reservation region: a reservation region is primarily for debugging.
It claims I/O space that is not supposed to be handled by QEMU itself.
The typical use is to track parts of the address space which will be
handled by the host kernel when KVM is enabled. You initialize these
by passing a NULL callback parameter to memory_region_init_io().

It is valid to add subregions to a region which is not a pure container
(that is, to an MMIO, RAM or ROM region). This means that the region
will act like a container, except that any addresses within the container’s
region which are not claimed by any subregion are handled by the
container itself (ie by its MMIO callbacks or RAM backing). However
it is generally possible to achieve the same effect with a pure container
one of whose subregions is a low priority “background” region covering
the whole address range; this is often clearer and is preferred.
Subregions cannot be added to an alias region.

Migration

Where the memory region is backed by host memory (RAM, ROM and
ROM device memory region types), this host memory needs to be
copied to the destination on migration. These APIs which allocate
the host memory for you will also register the memory so it is
migrated:

	memory_region_init_ram()

	memory_region_init_rom()

	memory_region_init_rom_device()

For most devices and boards this is the correct thing. If you
have a special case where you need to manage the migration of
the backing memory yourself, you can call the functions:

	memory_region_init_ram_nomigrate()

	memory_region_init_rom_nomigrate()

	memory_region_init_rom_device_nomigrate()

which only initialize the MemoryRegion and leave handling
migration to the caller.

The functions:

	memory_region_init_resizeable_ram()

	memory_region_init_ram_from_file()

	memory_region_init_ram_from_fd()

	memory_region_init_ram_ptr()

	memory_region_init_ram_device_ptr()

are for special cases only, and so they do not automatically
register the backing memory for migration; the caller must
manage migration if necessary.

Region names

Regions are assigned names by the constructor. For most regions these are
only used for debugging purposes, but RAM regions also use the name to identify
live migration sections. This means that RAM region names need to have ABI
stability.

Region lifecycle

A region is created by one of the memory_region_init*() functions and
attached to an object, which acts as its owner or parent. QEMU ensures
that the owner object remains alive as long as the region is visible to
the guest, or as long as the region is in use by a virtual CPU or another
device. For example, the owner object will not die between an
address_space_map operation and the corresponding address_space_unmap.

After creation, a region can be added to an address space or a
container with memory_region_add_subregion(), and removed using
memory_region_del_subregion().

Various region attributes (read-only, dirty logging, coalesced mmio,
ioeventfd) can be changed during the region lifecycle. They take effect
as soon as the region is made visible. This can be immediately, later,
or never.

Destruction of a memory region happens automatically when the owner
object dies.

If however the memory region is part of a dynamically allocated data
structure, you should call object_unparent() to destroy the memory region
before the data structure is freed. For an example see VFIOMSIXInfo
and VFIOQuirk in hw/vfio/pci.c.

You must not destroy a memory region as long as it may be in use by a
device or CPU. In order to do this, as a general rule do not create or
destroy memory regions dynamically during a device’s lifetime, and only
call object_unparent() in the memory region owner’s instance_finalize
callback. The dynamically allocated data structure that contains the
memory region then should obviously be freed in the instance_finalize
callback as well.

If you break this rule, the following situation can happen:

	the memory region’s owner had a reference taken via memory_region_ref
(for example by address_space_map)

	the region is unparented, and has no owner anymore

	when address_space_unmap is called, the reference to the memory region’s
owner is leaked.

There is an exception to the above rule: it is okay to call
object_unparent at any time for an alias or a container region. It is
therefore also okay to create or destroy alias and container regions
dynamically during a device’s lifetime.

This exceptional usage is valid because aliases and containers only help
QEMU building the guest’s memory map; they are never accessed directly.
memory_region_ref and memory_region_unref are never called on aliases
or containers, and the above situation then cannot happen. Exploiting
this exception is rarely necessary, and therefore it is discouraged,
but nevertheless it is used in a few places.

For regions that “have no owner” (NULL is passed at creation time), the
machine object is actually used as the owner. Since instance_finalize is
never called for the machine object, you must never call object_unparent
on regions that have no owner, unless they are aliases or containers.

Overlapping regions and priority

Usually, regions may not overlap each other; a memory address decodes into
exactly one target. In some cases it is useful to allow regions to overlap,
and sometimes to control which of an overlapping regions is visible to the
guest. This is done with memory_region_add_subregion_overlap(), which
allows the region to overlap any other region in the same container, and
specifies a priority that allows the core to decide which of two regions at
the same address are visible (highest wins).
Priority values are signed, and the default value is zero. This means that
you can use memory_region_add_subregion_overlap() both to specify a region
that must sit ‘above’ any others (with a positive priority) and also a
background region that sits ‘below’ others (with a negative priority).

If the higher priority region in an overlap is a container or alias, then
the lower priority region will appear in any “holes” that the higher priority
region has left by not mapping subregions to that area of its address range.
(This applies recursively – if the subregions are themselves containers or
aliases that leave holes then the lower priority region will appear in these
holes too.)

For example, suppose we have a container A of size 0x8000 with two subregions
B and C. B is a container mapped at 0x2000, size 0x4000, priority 2; C is
an MMIO region mapped at 0x0, size 0x6000, priority 1. B currently has two
of its own subregions: D of size 0x1000 at offset 0 and E of size 0x1000 at
offset 0x2000. As a diagram:

 0 1000 2000 3000 4000 5000 6000 7000 8000
 |------|------|------|------|------|------|------|------|
A: []
C: [CC]
B: []
D: [DDDDD]
E: [EEEEE]

The regions that will be seen within this address range then are:

[CCCCCCCCCCCC][DDDDD][CCCCC][EEEEE][CCCCC]

Since B has higher priority than C, its subregions appear in the flat map
even where they overlap with C. In ranges where B has not mapped anything
C’s region appears.

If B had provided its own MMIO operations (ie it was not a pure container)
then these would be used for any addresses in its range not handled by
D or E, and the result would be:

[CCCCCCCCCCCC][DDDDD][BBBBB][EEEEE][BBBBB]

Priority values are local to a container, because the priorities of two
regions are only compared when they are both children of the same container.
This means that the device in charge of the container (typically modelling
a bus or a memory controller) can use them to manage the interaction of
its child regions without any side effects on other parts of the system.
In the example above, the priorities of D and E are unimportant because
they do not overlap each other. It is the relative priority of B and C
that causes D and E to appear on top of C: D and E’s priorities are never
compared against the priority of C.

Visibility

The memory core uses the following rules to select a memory region when the
guest accesses an address:

	all direct subregions of the root region are matched against the address, in
descending priority order

	if the address lies outside the region offset/size, the subregion is
discarded

	if the subregion is a leaf (RAM or MMIO), the search terminates, returning
this leaf region

	if the subregion is a container, the same algorithm is used within the
subregion (after the address is adjusted by the subregion offset)

	if the subregion is an alias, the search is continued at the alias target
(after the address is adjusted by the subregion offset and alias offset)

	if a recursive search within a container or alias subregion does not
find a match (because of a “hole” in the container’s coverage of its
address range), then if this is a container with its own MMIO or RAM
backing the search terminates, returning the container itself. Otherwise
we continue with the next subregion in priority order

	if none of the subregions match the address then the search terminates
with no match found

Example memory map

system_memory: container@0-2^48-1
 |
 +---- lomem: alias@0-0xdfffffff ---> #ram (0-0xdfffffff)
 |
 +---- himem: alias@0x100000000-0x11fffffff ---> #ram (0xe0000000-0xffffffff)
 |
 +---- vga-window: alias@0xa0000-0xbffff ---> #pci (0xa0000-0xbffff)
 | (prio 1)
 |
 +---- pci-hole: alias@0xe0000000-0xffffffff ---> #pci (0xe0000000-0xffffffff)

pci (0-2^32-1)
 |
 +--- vga-area: container@0xa0000-0xbffff
 | |
 | +--- alias@0x00000-0x7fff ---> #vram (0x010000-0x017fff)
 | |
 | +--- alias@0x08000-0xffff ---> #vram (0x020000-0x027fff)
 |
 +---- vram: ram@0xe1000000-0xe1ffffff
 |
 +---- vga-mmio: mmio@0xe2000000-0xe200ffff

ram: ram@0x00000000-0xffffffff

This is a (simplified) PC memory map. The 4GB RAM block is mapped into the
system address space via two aliases: “lomem” is a 1:1 mapping of the first
3.5GB; “himem” maps the last 0.5GB at address 4GB. This leaves 0.5GB for the
so-called PCI hole, that allows a 32-bit PCI bus to exist in a system with
4GB of memory.

The memory controller diverts addresses in the range 640K-768K to the PCI
address space. This is modelled using the “vga-window” alias, mapped at a
higher priority so it obscures the RAM at the same addresses. The vga window
can be removed by programming the memory controller; this is modelled by
removing the alias and exposing the RAM underneath.

The pci address space is not a direct child of the system address space, since
we only want parts of it to be visible (we accomplish this using aliases).
It has two subregions: vga-area models the legacy vga window and is occupied
by two 32K memory banks pointing at two sections of the framebuffer.
In addition the vram is mapped as a BAR at address e1000000, and an additional
BAR containing MMIO registers is mapped after it.

Note that if the guest maps a BAR outside the PCI hole, it would not be
visible as the pci-hole alias clips it to a 0.5GB range.

MMIO Operations

MMIO regions are provided with ->read() and ->write() callbacks,
which are sufficient for most devices. Some devices change behaviour
based on the attributes used for the memory transaction, or need
to be able to respond that the access should provoke a bus error
rather than completing successfully; those devices can use the
->read_with_attrs() and ->write_with_attrs() callbacks instead.

In addition various constraints can be supplied to control how these
callbacks are called:

	.valid.min_access_size, .valid.max_access_size define the access sizes
(in bytes) which the device accepts; accesses outside this range will
have device and bus specific behaviour (ignored, or machine check)

	.valid.unaligned specifies that the device being modelled supports
unaligned accesses; if false, unaligned accesses will invoke the
appropriate bus or CPU specific behaviour.

	.impl.min_access_size, .impl.max_access_size define the access sizes
(in bytes) supported by the implementation; other access sizes will be
emulated using the ones available. For example a 4-byte write will be
emulated using four 1-byte writes, if .impl.max_access_size = 1.

	.impl.unaligned specifies that the implementation supports unaligned
accesses; if false, unaligned accesses will be emulated by two aligned
accesses.

API Reference

	
struct MemoryListener

	callbacks structure for updates to the physical memory map

Definition

struct MemoryListener {
 void (*begin)(MemoryListener *listener);
 void (*commit)(MemoryListener *listener);
 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, int old, int new);
 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, int old, int new);
 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 void (*log_global_start)(MemoryListener *listener);
 void (*log_global_stop)(MemoryListener *listener);
 void (*log_global_after_sync)(MemoryListener *listener);
 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e);
 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e);
 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, hwaddr addr, hwaddr len);
 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, hwaddr addr, hwaddr len);
 unsigned priority;
};

Members

	begin

	Called at the beginning of an address space update transaction.
Followed by calls to MemoryListener.region_add(),
MemoryListener.region_del(), MemoryListener.region_nop(),
MemoryListener.log_start() and MemoryListener.log_stop() in
increasing address order.

listener: The MemoryListener.

	commit

	Called at the end of an address space update transaction,
after the last call to MemoryListener.region_add(),
MemoryListener.region_del() or MemoryListener.region_nop(),
MemoryListener.log_start() and MemoryListener.log_stop().

listener: The MemoryListener.

	region_add

	Called during an address space update transaction,
for a section of the address space that is new in this address space
space since the last transaction.

listener: The MemoryListener.
section: The new MemoryRegionSection.

	region_del

	Called during an address space update transaction,
for a section of the address space that has disappeared in the address
space since the last transaction.

listener: The MemoryListener.
section: The old MemoryRegionSection.

	region_nop

	Called during an address space update transaction,
for a section of the address space that is in the same place in the address
space as in the last transaction.

listener: The MemoryListener.
section: The MemoryRegionSection.

	log_start

	Called during an address space update transaction, after
one of MemoryListener.region_add(),:c:type:MemoryListener.region_del() <MemoryListener> or
MemoryListener.region_nop(), if dirty memory logging clients have
become active since the last transaction.

listener: The MemoryListener.
section: The MemoryRegionSection.
old: A bitmap of dirty memory logging clients that were active in
the previous transaction.
new: A bitmap of dirty memory logging clients that are active in
the current transaction.

	log_stop

	Called during an address space update transaction, after
one of MemoryListener.region_add(), MemoryListener.region_del() or
MemoryListener.region_nop() and possibly after
MemoryListener.log_start(), if dirty memory logging clients have
become inactive since the last transaction.

listener: The MemoryListener.
section: The MemoryRegionSection.
old: A bitmap of dirty memory logging clients that were active in
the previous transaction.
new: A bitmap of dirty memory logging clients that are active in
the current transaction.

	log_sync

	Called by memory_region_snapshot_and_clear_dirty() and
memory_global_dirty_log_sync(), before accessing QEMU’s “official”
copy of the dirty memory bitmap for a MemoryRegionSection.

listener: The MemoryListener.
section: The MemoryRegionSection.

	log_clear

	Called before reading the dirty memory bitmap for a
MemoryRegionSection.

listener: The MemoryListener.
section: The MemoryRegionSection.

	log_global_start

	Called by memory_global_dirty_log_start(), which
enables the DIRTY_LOG_MIGRATION client on all memory regions in
the address space. MemoryListener.log_global_start() is also
called when a MemoryListener is added, if global dirty logging is
active at that time.

listener: The MemoryListener.

	log_global_stop

	Called by memory_global_dirty_log_stop(), which
disables the DIRTY_LOG_MIGRATION client on all memory regions in
the address space.

listener: The MemoryListener.

	log_global_after_sync

	Called after reading the dirty memory bitmap
for any MemoryRegionSection.

listener: The MemoryListener.

	eventfd_add

	Called during an address space update transaction,
for a section of the address space that has had a new ioeventfd
registration since the last transaction.

listener: The MemoryListener.
section: The new MemoryRegionSection.
match_data: The match_data parameter for the new ioeventfd.
data: The data parameter for the new ioeventfd.
e: The EventNotifier parameter for the new ioeventfd.

	eventfd_del

	Called during an address space update transaction,
for a section of the address space that has dropped an ioeventfd
registration since the last transaction.

listener: The MemoryListener.
section: The new MemoryRegionSection.
match_data: The match_data parameter for the dropped ioeventfd.
data: The data parameter for the dropped ioeventfd.
e: The EventNotifier parameter for the dropped ioeventfd.

	coalesced_io_add

	Called during an address space update transaction,
for a section of the address space that has had a new coalesced
MMIO range registration since the last transaction.

listener: The MemoryListener.
section: The new MemoryRegionSection.
addr: The starting address for the coalesced MMIO range.
len: The length of the coalesced MMIO range.

	coalesced_io_del

	Called during an address space update transaction,
for a section of the address space that has dropped a coalesced
MMIO range since the last transaction.

listener: The MemoryListener.
section: The new MemoryRegionSection.
addr: The starting address for the coalesced MMIO range.
len: The length of the coalesced MMIO range.

	priority

	Govern the order in which memory listeners are invoked. Lower priorities
are invoked earlier for “add” or “start” callbacks, and later for “delete”
or “stop” callbacks.

Description

Allows a component to adjust to changes in the guest-visible memory map.
Use with memory_listener_register() and memory_listener_unregister().

	
struct AddressSpace

	describes a mapping of addresses to MemoryRegion objects

Definition

struct AddressSpace {
};

Members

	
struct MemoryRegionSection

	describes a fragment of a MemoryRegion

Definition

struct MemoryRegionSection {
 Int128 size;
 MemoryRegion *mr;
 FlatView *fv;
 hwaddr offset_within_region;
 hwaddr offset_within_address_space;
 bool readonly;
 bool nonvolatile;
};

Members

	size

	the size of the section; will not exceed mr’s boundaries

	mr

	the region, or NULL if empty

	fv

	the flat view of the address space the region is mapped in

	offset_within_region

	the beginning of the section, relative to mr’s start

	offset_within_address_space

	the address of the first byte of the section
relative to the region’s address space

	readonly

	writes to this section are ignored

	nonvolatile

	this section is non-volatile

	
void memory_region_init(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size)

	Initialize a memory region

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	used for debugging; not visible to the user or ABI

	uint64_t size

	size of the region; any subregions beyond this size will be clipped

Description

The region typically acts as a container for other memory regions. Use
memory_region_add_subregion() to add subregions.

	
void memory_region_ref(MemoryRegion * mr)

	Add 1 to a memory region’s reference count

Parameters

	MemoryRegion * mr

	the MemoryRegion

Description

Whenever memory regions are accessed outside the BQL, they need to be
preserved against hot-unplug. MemoryRegions actually do not have their
own reference count; they piggyback on a QOM object, their “owner”.
This function adds a reference to the owner.

All MemoryRegions must have an owner if they can disappear, even if the
device they belong to operates exclusively under the BQL. This is because
the region could be returned at any time by memory_region_find, and this
is usually under guest control.

	
void memory_region_unref(MemoryRegion * mr)

	Remove 1 to a memory region’s reference count

Parameters

	MemoryRegion * mr

	the MemoryRegion

Description

Whenever memory regions are accessed outside the BQL, they need to be
preserved against hot-unplug. MemoryRegions actually do not have their
own reference count; they piggyback on a QOM object, their “owner”.
This function removes a reference to the owner and possibly destroys it.

	
void memory_region_init_io(MemoryRegion * mr, struct Object * owner, const MemoryRegionOps * ops, void * opaque, const char * name, uint64_t size)

	Initialize an I/O memory region.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const MemoryRegionOps * ops

	a structure containing read and write callbacks to be used when
I/O is performed on the region.

	void * opaque

	passed to the read and write callbacks of the ops structure.

	const char * name

	used for debugging; not visible to the user or ABI

	uint64_t size

	size of the region.

Description

Accesses into the region will cause the callbacks in ops to be called.
if size is nonzero, subregions will be clipped to size.

	
void memory_region_init_ram_nomigrate(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, Error ** errp)

	Initialize RAM memory region. Accesses into the region will modify memory directly.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.

	
void memory_region_init_ram_shared_nomigrate(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, bool share, Error ** errp)

	Initialize RAM memory region. Accesses into the region will modify memory directly.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	bool share

	allow remapping RAM to different addresses

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function is similar to memory_region_init_ram_nomigrate.
The only difference is part of the RAM region can be remapped.

	
void memory_region_init_resizeable_ram(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, uint64_t max_size, void (*resized) (const char*, uint64_t length, void *host, Error ** errp)

	Initialize memory region with resizeable RAM. Accesses into the region will modify memory directly. Only an initial portion of this RAM is actually used. The used size can change across reboots.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	used size of the region.

	uint64_t max_size

	max size of the region.

	void (*)(const char*, uint64_t length, void *host) resized

	callback to notify owner about used size change.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.

	
void memory_region_init_ram_from_file(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, uint64_t align, uint32_t ram_flags, const char * path, Error ** errp)

	Initialize RAM memory region with a mmap-ed backend.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	uint64_t align

	alignment of the region base address; if 0, the default alignment
(getpagesize()) will be used.

	uint32_t ram_flags

	Memory region features:
- RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
- RAM_PMEM: the memory is persistent memory
Other bits are ignored now.

	const char * path

	the path in which to allocate the RAM.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.

	
void memory_region_init_ram_from_fd(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, bool share, int fd, Error ** errp)

	Initialize RAM memory region with a mmap-ed backend.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	the name of the region.

	uint64_t size

	size of the region.

	bool share

	true if memory must be mmaped with the MAP_SHARED flag

	int fd

	the fd to mmap.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.

	
void memory_region_init_ram_ptr(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, void * ptr)

	Initialize RAM memory region from a user-provided pointer. Accesses into the region will modify memory directly.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	void * ptr

	memory to be mapped; must contain at least size bytes.

Description

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.

	
void memory_region_init_ram_device_ptr(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, void * ptr)

	Initialize RAM device memory region from a user-provided pointer.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	the name of the region.

	uint64_t size

	size of the region.

	void * ptr

	memory to be mapped; must contain at least size bytes.

Description

A RAM device represents a mapping to a physical device, such as to a PCI
MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
into the VM address space and access to the region will modify memory
directly. However, the memory region should not be included in a memory
dump (device may not be enabled/mapped at the time of the dump), and
operations incompatible with manipulating MMIO should be avoided. Replaces
skip_dump flag.

Note that this function does not do anything to cause the data in the
RAM memory region to be migrated; that is the responsibility of the caller.
(For RAM device memory regions, migrating the contents rarely makes sense.)

	
void memory_region_init_alias(MemoryRegion * mr, struct Object * owner, const char * name, MemoryRegion * orig, hwaddr offset, uint64_t size)

	Initialize a memory region that aliases all or a part of another memory region.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	used for debugging; not visible to the user or ABI

	MemoryRegion * orig

	the region to be referenced; mr will be equivalent to
orig between offset and offset + size - 1.

	hwaddr offset

	start of the section in orig to be referenced.

	uint64_t size

	size of the region.

	
void memory_region_init_rom_nomigrate(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, Error ** errp)

	Initialize a ROM memory region.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

This has the same effect as calling memory_region_init_ram_nomigrate()
and then marking the resulting region read-only with
memory_region_set_readonly().

Note that this function does not do anything to cause the data in the
RAM side of the memory region to be migrated; that is the responsibility
of the caller.

	
void memory_region_init_rom_device_nomigrate(MemoryRegion * mr, struct Object * owner, const MemoryRegionOps * ops, void * opaque, const char * name, uint64_t size, Error ** errp)

	Initialize a ROM memory region. Writes are handled via callbacks.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const MemoryRegionOps * ops

	callbacks for write access handling (must not be NULL).

	void * opaque

	passed to the read and write callbacks of the ops structure.

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Note that this function does not do anything to cause the data in the
RAM side of the memory region to be migrated; that is the responsibility
of the caller.

	
void memory_region_init_iommu(void * _iommu_mr, size_t instance_size, const char * mrtypename, Object * owner, const char * name, uint64_t size)

	Initialize a memory region of a custom type that translates addresses

Parameters

	void * _iommu_mr

	the IOMMUMemoryRegion to be initialized

	size_t instance_size

	the IOMMUMemoryRegion subclass instance size

	const char * mrtypename

	the type name of the IOMMUMemoryRegion

	Object * owner

	the object that tracks the region’s reference count

	const char * name

	used for debugging; not visible to the user or ABI

	uint64_t size

	size of the region.

Description

An IOMMU region translates addresses and forwards accesses to a target
memory region.

The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
_iommu_mr should be a pointer to enough memory for an instance of
that subclass, instance_size is the size of that subclass, and
mrtypename is its name. This function will initialize _iommu_mr as an
instance of the subclass, and its methods will then be called to handle
accesses to the memory region. See the documentation of
IOMMUMemoryRegionClass for further details.

	
void memory_region_init_ram(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, Error ** errp)

	Initialize RAM memory region. Accesses into the region will modify memory directly.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized

	struct Object * owner

	the object that tracks the region’s reference count (must be
TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)

	const char * name

	name of the memory region

	uint64_t size

	size of the region in bytes

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

This function allocates RAM for a board model or device, and
arranges for it to be migrated (by calling vmstate_register_ram()
if owner is a DeviceState, or vmstate_register_ram_global() if
owner is NULL).

TODO: Currently we restrict owner to being either NULL (for
global RAM regions with no owner) or devices, so that we can
give the RAM block a unique name for migration purposes.
We should lift this restriction and allow arbitrary Objects.
If you pass a non-NULL non-device owner then we will assert.

	
void memory_region_init_rom(MemoryRegion * mr, struct Object * owner, const char * name, uint64_t size, Error ** errp)

	Initialize a ROM memory region.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

This has the same effect as calling memory_region_init_ram()
and then marking the resulting region read-only with
memory_region_set_readonly(). This includes arranging for the
contents to be migrated.

TODO: Currently we restrict owner to being either NULL (for
global RAM regions with no owner) or devices, so that we can
give the RAM block a unique name for migration purposes.
We should lift this restriction and allow arbitrary Objects.
If you pass a non-NULL non-device owner then we will assert.

	
void memory_region_init_rom_device(MemoryRegion * mr, struct Object * owner, const MemoryRegionOps * ops, void * opaque, const char * name, uint64_t size, Error ** errp)

	Initialize a ROM memory region. Writes are handled via callbacks.

Parameters

	MemoryRegion * mr

	the MemoryRegion to be initialized.

	struct Object * owner

	the object that tracks the region’s reference count

	const MemoryRegionOps * ops

	callbacks for write access handling (must not be NULL).

	void * opaque

	passed to the read and write callbacks of the ops structure.

	const char * name

	Region name, becomes part of RAMBlock name used in migration stream
must be unique within any device

	uint64_t size

	size of the region.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

This function initializes a memory region backed by RAM for reads
and callbacks for writes, and arranges for the RAM backing to
be migrated (by calling vmstate_register_ram()
if owner is a DeviceState, or vmstate_register_ram_global() if
owner is NULL).

TODO: Currently we restrict owner to being either NULL (for
global RAM regions with no owner) or devices, so that we can
give the RAM block a unique name for migration purposes.
We should lift this restriction and allow arbitrary Objects.
If you pass a non-NULL non-device owner then we will assert.

	
struct Object * memory_region_owner(MemoryRegion * mr)

	get a memory region’s owner.

Parameters

	MemoryRegion * mr

	the memory region being queried.

	
uint64_t memory_region_size(MemoryRegion * mr)

	get a memory region’s size.

Parameters

	MemoryRegion * mr

	the memory region being queried.

	
bool memory_region_is_ram(MemoryRegion * mr)

	check whether a memory region is random access

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns true if a memory region is random access.

	
bool memory_region_is_ram_device(MemoryRegion * mr)

	check whether a memory region is a ram device

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns true if a memory region is a device backed ram region

	
bool memory_region_is_romd(MemoryRegion * mr)

	check whether a memory region is in ROMD mode

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns true if a memory region is a ROM device and currently set to allow
direct reads.

	
IOMMUMemoryRegion * memory_region_get_iommu(MemoryRegion * mr)

	check whether a memory region is an iommu

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
otherwise NULL.

	
IOMMUMemoryRegionClass * memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)

	returns iommu memory region class if an iommu or NULL if not

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region being queried

Description

Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
otherwise NULL. This is fast path avoiding QOM checking, use with caution.

	
uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion * iommu_mr)

	get minimum supported page size for an iommu

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region being queried

Description

Returns minimum supported page size for an iommu.

	
void memory_region_notify_iommu(IOMMUMemoryRegion * iommu_mr, int iommu_idx, IOMMUTLBEntry entry)

	notify a change in an IOMMU translation entry.

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region that was changed

	int iommu_idx

	the IOMMU index for the translation table which has changed

	IOMMUTLBEntry entry

	the new entry in the IOMMU translation table. The entry
replaces all old entries for the same virtual I/O address range.
Deleted entries have .**perm** == 0.

Description

The notification type will be decided by entry.perm bits:

	For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.

	For MAP (newly added entry) notifies: set entry.perm to the
permission of the page (which is definitely !IOMMU_NONE).

Note

for any IOMMU implementation, an in-place mapping change
should be notified with an UNMAP followed by a MAP.

	
void memory_region_notify_one(IOMMUNotifier * notifier, IOMMUTLBEntry * entry)

	notify a change in an IOMMU translation entry to a single notifier

Parameters

	IOMMUNotifier * notifier

	the notifier to be notified

	IOMMUTLBEntry * entry

	the new entry in the IOMMU translation table. The entry
replaces all old entries for the same virtual I/O address range.
Deleted entries have .**perm** == 0.

Description

This works just like memory_region_notify_iommu(), but it only
notifies a specific notifier, not all of them.

	
int memory_region_register_iommu_notifier(MemoryRegion * mr, IOMMUNotifier * n, Error ** errp)

	register a notifier for changes to IOMMU translation entries.

Parameters

	MemoryRegion * mr

	the memory region to observe

	IOMMUNotifier * n

	the IOMMUNotifier to be added; the notify callback receives a
pointer to an IOMMUTLBEntry as the opaque value; the pointer
ceases to be valid on exit from the notifier.

	Error ** errp

	pointer to Error*, to store an error if it happens.

Description

Returns 0 on success, or a negative errno otherwise. In particular,
-EINVAL indicates that at least one of the attributes of the notifier
is not supported (flag/range) by the IOMMU memory region. In case of error
the error object must be created.

	
void memory_region_iommu_replay(IOMMUMemoryRegion * iommu_mr, IOMMUNotifier * n)

	replay existing IOMMU translations to a notifier with the minimum page granularity returned by mr->iommu_ops->get_page_size().

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region to observe

	IOMMUNotifier * n

	the notifier to which to replay iommu mappings

Note

this is not related to record-and-replay functionality.

	
void memory_region_unregister_iommu_notifier(MemoryRegion * mr, IOMMUNotifier * n)

	unregister a notifier for changes to IOMMU translation entries.

Parameters

	MemoryRegion * mr

	the memory region which was observed and for which notity_stopped()
needs to be called

	IOMMUNotifier * n

	the notifier to be removed.

	
int memory_region_iommu_get_attr(IOMMUMemoryRegion * iommu_mr, enum IOMMUMemoryRegionAttr attr, void * data)

	return an IOMMU attr if get_attr() is defined on the IOMMU.

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region

	enum IOMMUMemoryRegionAttr attr

	the requested attribute

	void * data

	a pointer to the requested attribute data

Description

Returns 0 on success, or a negative errno otherwise. In particular,
-EINVAL indicates that the IOMMU does not support the requested
attribute.

	
int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion * iommu_mr, MemTxAttrs attrs)

	return the IOMMU index to use for translations with the given memory transaction attributes.

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region

	MemTxAttrs attrs

	the memory transaction attributes

	
int memory_region_iommu_num_indexes(IOMMUMemoryRegion * iommu_mr)

	return the total number of IOMMU indexes that this IOMMU supports.

Parameters

	IOMMUMemoryRegion * iommu_mr

	the memory region

	
const char * memory_region_name(const MemoryRegion * mr)

	get a memory region’s name

Parameters

	const MemoryRegion * mr

	the memory region being queried

Description

Returns the string that was used to initialize the memory region.

	
bool memory_region_is_logging(MemoryRegion * mr, uint8_t client)

	return whether a memory region is logging writes

Parameters

	MemoryRegion * mr

	the memory region being queried

	uint8_t client

	the client being queried

Description

Returns true if the memory region is logging writes for the given client

	
uint8_t memory_region_get_dirty_log_mask(MemoryRegion * mr)

	return the clients for which a memory region is logging writes.

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
are the bit indices.

	
bool memory_region_is_rom(MemoryRegion * mr)

	check whether a memory region is ROM

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns true if a memory region is read-only memory.

	
bool memory_region_is_nonvolatile(MemoryRegion * mr)

	check whether a memory region is non-volatile

Parameters

	MemoryRegion * mr

	the memory region being queried

Description

Returns true is a memory region is non-volatile memory.

	
int memory_region_get_fd(MemoryRegion * mr)

	Get a file descriptor backing a RAM memory region.

Parameters

	MemoryRegion * mr

	the RAM or alias memory region being queried.

Description

Returns a file descriptor backing a file-based RAM memory region,
or -1 if the region is not a file-based RAM memory region.

	
MemoryRegion * memory_region_from_host(void * ptr, ram_addr_t * offset)

	Convert a pointer into a RAM memory region and an offset within it.

Parameters

	void * ptr

	the host pointer to be converted

	ram_addr_t * offset

	the offset within memory region

Description

Given a host pointer inside a RAM memory region (created with
memory_region_init_ram() or memory_region_init_ram_ptr()), return
the MemoryRegion and the offset within it.

Use with care; by the time this function returns, the returned pointer is
not protected by RCU anymore. If the caller is not within an RCU critical
section and does not hold the iothread lock, it must have other means of
protecting the pointer, such as a reference to the region that includes
the incoming ram_addr_t.

	
void * memory_region_get_ram_ptr(MemoryRegion * mr)

	Get a pointer into a RAM memory region.

Parameters

	MemoryRegion * mr

	the memory region being queried.

Description

Returns a host pointer to a RAM memory region (created with
memory_region_init_ram() or memory_region_init_ram_ptr()).

Use with care; by the time this function returns, the returned pointer is
not protected by RCU anymore. If the caller is not within an RCU critical
section and does not hold the iothread lock, it must have other means of
protecting the pointer, such as a reference to the region that includes
the incoming ram_addr_t.

	
void memory_region_do_writeback(MemoryRegion * mr, hwaddr addr, hwaddr size)

	Trigger cache writeback or msync for selected address range

Parameters

	MemoryRegion * mr

	the memory region to be updated

	hwaddr addr

	the initial address of the range to be written back

	hwaddr size

	the size of the range to be written back

	
void memory_region_set_log(MemoryRegion * mr, bool log, unsigned client)

	Turn dirty logging on or off for a region.

Parameters

	MemoryRegion * mr

	the memory region being updated.

	bool log

	whether dirty logging is to be enabled or disabled.

	unsigned client

	the user of the logging information; DIRTY_MEMORY_VGA only.

Description

Turns dirty logging on or off for a specified client (display, migration).
Only meaningful for RAM regions.

	
void memory_region_set_dirty(MemoryRegion * mr, hwaddr addr, hwaddr size)

	Mark a range of bytes as dirty in a memory region.

Parameters

	MemoryRegion * mr

	the memory region being dirtied.

	hwaddr addr

	the address (relative to the start of the region) being dirtied.

	hwaddr size

	size of the range being dirtied.

Description

Marks a range of bytes as dirty, after it has been dirtied outside
guest code.

	
void memory_region_clear_dirty_bitmap(MemoryRegion * mr, hwaddr start, hwaddr len)

	clear dirty bitmap for memory range

Parameters

	MemoryRegion * mr

	the memory region to clear the dirty log upon

	hwaddr start

	start address offset within the memory region

	hwaddr len

	length of the memory region to clear dirty bitmap

Description

This function is called when the caller wants to clear the remote
dirty bitmap of a memory range within the memory region. This can
be used by e.g. KVM to manually clear dirty log when
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
kernel.

	
DirtyBitmapSnapshot * memory_region_snapshot_and_clear_dirty(MemoryRegion * mr, hwaddr addr, hwaddr size, unsigned client)

	Get a snapshot of the dirty bitmap and clear it.

Parameters

	MemoryRegion * mr

	the memory region being queried.

	hwaddr addr

	the address (relative to the start of the region) being queried.

	hwaddr size

	the size of the range being queried.

	unsigned client

	the user of the logging information; typically DIRTY_MEMORY_VGA.

Description

Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
returns the snapshot. The snapshot can then be used to query dirty
status, using memory_region_snapshot_get_dirty. Snapshotting allows
querying the same page multiple times, which is especially useful for
display updates where the scanlines often are not page aligned.

The dirty bitmap region which gets copyed into the snapshot (and
cleared afterwards) can be larger than requested. The boundaries
are rounded up/down so complete bitmap longs (covering 64 pages on
64bit hosts) can be copied over into the bitmap snapshot. Which
isn’t a problem for display updates as the extra pages are outside
the visible area, and in case the visible area changes a full
display redraw is due anyway. Should other use cases for this
function emerge we might have to revisit this implementation
detail.

Use g_free to release DirtyBitmapSnapshot.

	
bool memory_region_snapshot_get_dirty(MemoryRegion * mr, DirtyBitmapSnapshot * snap, hwaddr addr, hwaddr size)

	Check whether a range of bytes is dirty in the specified dirty bitmap snapshot.

Parameters

	MemoryRegion * mr

	the memory region being queried.

	DirtyBitmapSnapshot * snap

	the dirty bitmap snapshot

	hwaddr addr

	the address (relative to the start of the region) being queried.

	hwaddr size

	the size of the range being queried.

	
void memory_region_reset_dirty(MemoryRegion * mr, hwaddr addr, hwaddr size, unsigned client)

	Mark a range of pages as clean, for a specified client.

Parameters

	MemoryRegion * mr

	the region being updated.

	hwaddr addr

	the start of the subrange being cleaned.

	hwaddr size

	the size of the subrange being cleaned.

	unsigned client

	the user of the logging information; DIRTY_MEMORY_MIGRATION or
DIRTY_MEMORY_VGA.

Description

Marks a range of pages as no longer dirty.

	
void memory_region_flush_rom_device(MemoryRegion * mr, hwaddr addr, hwaddr size)

	Mark a range of pages dirty and invalidate TBs (for self-modifying code).

Parameters

	MemoryRegion * mr

	the region being flushed.

	hwaddr addr

	the start, relative to the start of the region, of the range being
flushed.

	hwaddr size

	the size, in bytes, of the range being flushed.

Description

The MemoryRegionOps->write() callback of a ROM device must use this function
to mark byte ranges that have been modified internally, such as by directly
accessing the memory returned by memory_region_get_ram_ptr().

This function marks the range dirty and invalidates TBs so that TCG can
detect self-modifying code.

	
void memory_region_set_readonly(MemoryRegion * mr, bool readonly)

	Turn a memory region read-only (or read-write)

Parameters

	MemoryRegion * mr

	the region being updated.

	bool readonly

	whether rhe region is to be ROM or RAM.

Description

Allows a memory region to be marked as read-only (turning it into a ROM).
only useful on RAM regions.

	
void memory_region_set_nonvolatile(MemoryRegion * mr, bool nonvolatile)

	Turn a memory region non-volatile

Parameters

	MemoryRegion * mr

	the region being updated.

	bool nonvolatile

	whether rhe region is to be non-volatile.

Description

Allows a memory region to be marked as non-volatile.
only useful on RAM regions.

	
void memory_region_rom_device_set_romd(MemoryRegion * mr, bool romd_mode)

	enable/disable ROMD mode

Parameters

	MemoryRegion * mr

	the memory region to be updated

	bool romd_mode

	true to put the region into ROMD mode

Description

Allows a ROM device (initialized with memory_region_init_rom_device() to
set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
device is mapped to guest memory and satisfies read access directly.
When in MMIO mode, reads are forwarded to the MemoryRegion.read function.
Writes are always handled by the MemoryRegion.write function.

	
void memory_region_set_coalescing(MemoryRegion * mr)

	Enable memory coalescing for the region.

Parameters

	MemoryRegion * mr

	the memory region to be write coalesced

Description

Enabled writes to a region to be queued for later processing. MMIO ->write
callbacks may be delayed until a non-coalesced MMIO is issued.
Only useful for IO regions. Roughly similar to write-combining hardware.

	
void memory_region_add_coalescing(MemoryRegion * mr, hwaddr offset, uint64_t size)

	Enable memory coalescing for a sub-range of a region.

Parameters

	MemoryRegion * mr

	the memory region to be updated.

	hwaddr offset

	the start of the range within the region to be coalesced.

	uint64_t size

	the size of the subrange to be coalesced.

Description

Like memory_region_set_coalescing(), but works on a sub-range of a region.
Multiple calls can be issued coalesced disjoint ranges.

	
void memory_region_clear_coalescing(MemoryRegion * mr)

	Disable MMIO coalescing for the region.

Parameters

	MemoryRegion * mr

	the memory region to be updated.

Description

Disables any coalescing caused by memory_region_set_coalescing() or
memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
hardware.

	
void memory_region_set_flush_coalesced(MemoryRegion * mr)

	Enforce memory coalescing flush before accesses.

Parameters

	MemoryRegion * mr

	the memory region to be updated.

Description

Ensure that pending coalesced MMIO request are flushed before the memory
region is accessed. This property is automatically enabled for all regions
passed to memory_region_set_coalescing() and memory_region_add_coalescing().

	
void memory_region_clear_flush_coalesced(MemoryRegion * mr)

	Disable memory coalescing flush before accesses.

Parameters

	MemoryRegion * mr

	the memory region to be updated.

Description

Clear the automatic coalesced MMIO flushing enabled via
memory_region_set_flush_coalesced. Note that this service has no effect on
memory regions that have MMIO coalescing enabled for themselves. For them,
automatic flushing will stop once coalescing is disabled.

	
void memory_region_clear_global_locking(MemoryRegion * mr)

	Declares that access processing does not depend on the QEMU global lock.

Parameters

	MemoryRegion * mr

	the memory region to be updated.

Description

By clearing this property, accesses to the memory region will be processed
outside of QEMU’s global lock (unless the lock is held on when issuing the
access request). In this case, the device model implementing the access
handlers is responsible for synchronization of concurrency.

	
void memory_region_add_eventfd(MemoryRegion * mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier * e)

	Request an eventfd to be triggered when a word is written to a location.

Parameters

	MemoryRegion * mr

	the memory region being updated.

	hwaddr addr

	the address within mr that is to be monitored

	unsigned size

	the size of the access to trigger the eventfd

	bool match_data

	whether to match against data, instead of just addr

	uint64_t data

	the data to match against the guest write

	EventNotifier * e

	event notifier to be triggered when addr, size, and data all match.

Description

Marks a word in an IO region (initialized with memory_region_init_io())
as a trigger for an eventfd event. The I/O callback will not be called.
The caller must be prepared to handle failure (that is, take the required
action if the callback _is_ called).

	
void memory_region_del_eventfd(MemoryRegion * mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier * e)

	Cancel an eventfd.

Parameters

	MemoryRegion * mr

	the memory region being updated.

	hwaddr addr

	the address within mr that is to be monitored

	unsigned size

	the size of the access to trigger the eventfd

	bool match_data

	whether to match against data, instead of just addr

	uint64_t data

	the data to match against the guest write

	EventNotifier * e

	event notifier to be triggered when addr, size, and data all match.

Description

Cancels an eventfd trigger requested by a previous
memory_region_add_eventfd() call.

	
void memory_region_add_subregion(MemoryRegion * mr, hwaddr offset, MemoryRegion * subregion)

	Add a subregion to a container.

Parameters

	MemoryRegion * mr

	the region to contain the new subregion; must be a container
initialized with memory_region_init().

	hwaddr offset

	the offset relative to mr where subregion is added.

	MemoryRegion * subregion

	the subregion to be added.

Description

Adds a subregion at offset. The subregion may not overlap with other
subregions (except for those explicitly marked as overlapping). A region
may only be added once as a subregion (unless removed with
memory_region_del_subregion()); use memory_region_init_alias() if you
want a region to be a subregion in multiple locations.

	
void memory_region_add_subregion_overlap(MemoryRegion * mr, hwaddr offset, MemoryRegion * subregion, int priority)

	Add a subregion to a container with overlap.

Parameters

	MemoryRegion * mr

	the region to contain the new subregion; must be a container
initialized with memory_region_init().

	hwaddr offset

	the offset relative to mr where subregion is added.

	MemoryRegion * subregion

	the subregion to be added.

	int priority

	used for resolving overlaps; highest priority wins.

Description

Adds a subregion at offset. The subregion may overlap with other
subregions. Conflicts are resolved by having a higher priority hide a
lower priority. Subregions without priority are taken as priority 0.
A region may only be added once as a subregion (unless removed with
memory_region_del_subregion()); use memory_region_init_alias() if you
want a region to be a subregion in multiple locations.

	
ram_addr_t memory_region_get_ram_addr(MemoryRegion * mr)

	Get the ram address associated with a memory region

Parameters

	MemoryRegion * mr

	the region to be queried

	
void memory_region_del_subregion(MemoryRegion * mr, MemoryRegion * subregion)

	Remove a subregion.

Parameters

	MemoryRegion * mr

	the container to be updated.

	MemoryRegion * subregion

	the region being removed; must be a current subregion of mr.

Description

Removes a subregion from its container.

	
bool memory_region_present(MemoryRegion * container, hwaddr addr)

	checks if an address relative to a container translates into MemoryRegion within container

Parameters

	MemoryRegion * container

	a MemoryRegion within which addr is a relative address

	hwaddr addr

	the area within container to be searched

Description

Answer whether a MemoryRegion within container covers the address
addr.

	
bool memory_region_is_mapped(MemoryRegion * mr)

	returns true if MemoryRegion is mapped into any address space.

Parameters

	MemoryRegion * mr

	a MemoryRegion which should be checked if it’s mapped

	
MemoryRegionSection memory_region_find(MemoryRegion * mr, hwaddr addr, uint64_t size)

	translate an address/size relative to a MemoryRegion into a MemoryRegionSection.

Parameters

	MemoryRegion * mr

	a MemoryRegion within which addr is a relative address

	hwaddr addr

	start of the area within as to be searched

	uint64_t size

	size of the area to be searched

Description

Locates the first MemoryRegion within mr that overlaps the range
given by addr and size.

Returns a MemoryRegionSection that describes a contiguous overlap.
It will have the following characteristics:
- size = 0 iff no overlap was found
- mr is non-NULL iff an overlap was found

Remember that in the return value the offset_within_region is
relative to the returned region (in the .**mr** field), not to the
mr argument.

Similarly, the .**offset_within_address_space** is relative to the
address space that contains both regions, the passed and the
returned one. However, in the special case where the mr argument
has no container (and thus is the root of the address space), the
following will hold:
- offset_within_address_space >= addr
- offset_within_address_space + .**size** <= addr + size

	
void memory_global_dirty_log_sync(void)

	synchronize the dirty log for all memory

Parameters

	void

	no arguments

Description

Synchronizes the dirty page log for all address spaces.

	
void memory_global_after_dirty_log_sync(void)

	synchronize the dirty log for all memory

Parameters

	void

	no arguments

Description

Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
This function must be called after the dirty log bitmap is cleared, and
before dirty guest memory pages are read. If you are using
DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
care of doing this.

	
void memory_region_transaction_begin(void)

	Start a transaction.

Parameters

	void

	no arguments

Description

During a transaction, changes will be accumulated and made visible
only when the transaction ends (is committed).

	
void memory_region_transaction_commit(void)

	Commit a transaction and make changes visible to the guest.

Parameters

	void

	no arguments

	
void memory_listener_register(MemoryListener * listener, AddressSpace * filter)

	register callbacks to be called when memory sections are mapped or unmapped into an address space

Parameters

	MemoryListener * listener

	an object containing the callbacks to be called

	AddressSpace * filter

	if non-NULL, only regions in this address space will be observed

	
void memory_listener_unregister(MemoryListener * listener)

	undo the effect of memory_listener_register()

Parameters

	MemoryListener * listener

	an object containing the callbacks to be removed

	
void memory_global_dirty_log_start(void)

	begin dirty logging for all regions

Parameters

	void

	no arguments

	
void memory_global_dirty_log_stop(void)

	end dirty logging for all regions

Parameters

	void

	no arguments

	
MemTxResult memory_region_dispatch_read(MemoryRegion * mr, hwaddr addr, uint64_t * pval, MemOp op, MemTxAttrs attrs)

	perform a read directly to the specified MemoryRegion.

Parameters

	MemoryRegion * mr

	MemoryRegion to access

	hwaddr addr

	address within that region

	uint64_t * pval

	pointer to uint64_t which the data is written to

	MemOp op

	size, sign, and endianness of the memory operation

	MemTxAttrs attrs

	memory transaction attributes to use for the access

	
MemTxResult memory_region_dispatch_write(MemoryRegion * mr, hwaddr addr, uint64_t data, MemOp op, MemTxAttrs attrs)

	perform a write directly to the specified MemoryRegion.

Parameters

	MemoryRegion * mr

	MemoryRegion to access

	hwaddr addr

	address within that region

	uint64_t data

	data to write

	MemOp op

	size, sign, and endianness of the memory operation

	MemTxAttrs attrs

	memory transaction attributes to use for the access

	
void address_space_init(AddressSpace * as, MemoryRegion * root, const char * name)

	initializes an address space

Parameters

	AddressSpace * as

	an uninitialized AddressSpace

	MemoryRegion * root

	a MemoryRegion that routes addresses for the address space

	const char * name

	an address space name. The name is only used for debugging
output.

	
void address_space_destroy(AddressSpace * as)

	destroy an address space

Parameters

	AddressSpace * as

	address space to be destroyed

Description

Releases all resources associated with an address space. After an address space
is destroyed, its root memory region (given by address_space_init()) may be destroyed
as well.

	
void address_space_remove_listeners(AddressSpace * as)

	unregister all listeners of an address space

Parameters

	AddressSpace * as

	an initialized AddressSpace

Description

Removes all callbacks previously registered with memory_listener_register()
for as.

	
MemTxResult address_space_rw(AddressSpace * as, hwaddr addr, MemTxAttrs attrs, void * buf, hwaddr len, bool is_write)

	read from or write to an address space.

Parameters

	AddressSpace * as

	AddressSpace to be accessed

	hwaddr addr

	address within that address space

	MemTxAttrs attrs

	memory transaction attributes

	void * buf

	buffer with the data transferred

	hwaddr len

	the number of bytes to read or write

	bool is_write

	indicates the transfer direction

Description

Return a MemTxResult indicating whether the operation succeeded
or failed (eg unassigned memory, device rejected the transaction,
IOMMU fault).

	
MemTxResult address_space_write(AddressSpace * as, hwaddr addr, MemTxAttrs attrs, const void * buf, hwaddr len)

	write to address space.

Parameters

	AddressSpace * as

	AddressSpace to be accessed

	hwaddr addr

	address within that address space

	MemTxAttrs attrs

	memory transaction attributes

	const void * buf

	buffer with the data transferred

	hwaddr len

	the number of bytes to write

Description

Return a MemTxResult indicating whether the operation succeeded
or failed (eg unassigned memory, device rejected the transaction,
IOMMU fault).

	
MemTxResult address_space_write_rom(AddressSpace * as, hwaddr addr, MemTxAttrs attrs, const void * buf, hwaddr len)

	write to address space, including ROM.

Parameters

	AddressSpace * as

	AddressSpace to be accessed

	hwaddr addr

	address within that address space

	MemTxAttrs attrs

	memory transaction attributes

	const void * buf

	buffer with the data transferred

	hwaddr len

	the number of bytes to write

Description

This function writes to the specified address space, but will
write data to both ROM and RAM. This is used for non-guest
writes like writes from the gdb debug stub or initial loading
of ROM contents.

Note that portions of the write which attempt to write data to
a device will be silently ignored – only real RAM and ROM will
be written to.

Return a MemTxResult indicating whether the operation succeeded
or failed (eg unassigned memory, device rejected the transaction,
IOMMU fault).

	
void address_space_cache_invalidate(MemoryRegionCache * cache, hwaddr addr, hwaddr access_len)

	complete a write to a MemoryRegionCache

Parameters

	MemoryRegionCache * cache

	The MemoryRegionCache to operate on.

	hwaddr addr

	The first physical address that was written, relative to the
address that was passed to address_space_cache_init.

	hwaddr access_len

	The number of bytes that were written starting at addr.

	
void address_space_cache_destroy(MemoryRegionCache * cache)

	free a MemoryRegionCache

Parameters

	MemoryRegionCache * cache

	The MemoryRegionCache whose memory should be released.

	
MemTxResult address_space_read(AddressSpace * as, hwaddr addr, MemTxAttrs attrs, void * buf, hwaddr len)

	read from an address space.

Parameters

	AddressSpace * as

	AddressSpace to be accessed

	hwaddr addr

	address within that address space

	MemTxAttrs attrs

	memory transaction attributes

	void * buf

	buffer with the data transferred

	hwaddr len

	length of the data transferred

Description

Return a MemTxResult indicating whether the operation succeeded
or failed (eg unassigned memory, device rejected the transaction,
IOMMU fault). Called within RCU critical section.

	
void address_space_read_cached(MemoryRegionCache * cache, hwaddr addr, void * buf, hwaddr len)

	read from a cached RAM region

Parameters

	MemoryRegionCache * cache

	Cached region to be addressed

	hwaddr addr

	address relative to the base of the RAM region

	void * buf

	buffer with the data transferred

	hwaddr len

	length of the data transferred

	
void address_space_write_cached(MemoryRegionCache * cache, hwaddr addr, const void * buf, hwaddr len)

	write to a cached RAM region

Parameters

	MemoryRegionCache * cache

	Cached region to be addressed

	hwaddr addr

	address relative to the base of the RAM region

	const void * buf

	buffer with the data transferred

	hwaddr len

	length of the data transferred

Migration

QEMU has code to load/save the state of the guest that it is running.
These are two complementary operations. Saving the state just does
that, saves the state for each device that the guest is running.
Restoring a guest is just the opposite operation: we need to load the
state of each device.

For this to work, QEMU has to be launched with the same arguments the
two times. I.e. it can only restore the state in one guest that has
the same devices that the one it was saved (this last requirement can
be relaxed a bit, but for now we can consider that configuration has
to be exactly the same).

Once that we are able to save/restore a guest, a new functionality is
requested: migration. This means that QEMU is able to start in one
machine and being “migrated” to another machine. I.e. being moved to
another machine.

Next was the “live migration” functionality. This is important
because some guests run with a lot of state (specially RAM), and it
can take a while to move all state from one machine to another. Live
migration allows the guest to continue running while the state is
transferred. Only while the last part of the state is transferred has
the guest to be stopped. Typically the time that the guest is
unresponsive during live migration is the low hundred of milliseconds
(notice that this depends on a lot of things).

Transports

The migration stream is normally just a byte stream that can be passed
over any transport.

	tcp migration: do the migration using tcp sockets

	unix migration: do the migration using unix sockets

	exec migration: do the migration using the stdin/stdout through a process.

	fd migration: do the migration using a file descriptor that is
passed to QEMU. QEMU doesn’t care how this file descriptor is opened.

In addition, support is included for migration using RDMA, which
transports the page data using RDMA, where the hardware takes care of
transporting the pages, and the load on the CPU is much lower. While the
internals of RDMA migration are a bit different, this isn’t really visible
outside the RAM migration code.

All these migration protocols use the same infrastructure to
save/restore state devices. This infrastructure is shared with the
savevm/loadvm functionality.

Common infrastructure

The files, sockets or fd’s that carry the migration stream are abstracted by
the QEMUFile type (see migration/qemu-file.h). In most cases this
is connected to a subtype of QIOChannel (see io/).

Saving the state of one device

For most devices, the state is saved in a single call to the migration
infrastructure; these are non-iterative devices. The data for these
devices is sent at the end of precopy migration, when the CPUs are paused.
There are also iterative devices, which contain a very large amount of
data (e.g. RAM or large tables). See the iterative device section below.

General advice for device developers

	The migration state saved should reflect the device being modelled rather
than the way your implementation works. That way if you change the implementation
later the migration stream will stay compatible. That model may include
internal state that’s not directly visible in a register.

	When saving a migration stream the device code may walk and check
the state of the device. These checks might fail in various ways (e.g.
discovering internal state is corrupt or that the guest has done something bad).
Consider carefully before asserting/aborting at this point, since the
normal response from users is that migration broke their VM since it had
apparently been running fine until then. In these error cases, the device
should log a message indicating the cause of error, and should consider
putting the device into an error state, allowing the rest of the VM to
continue execution.

	The migration might happen at an inconvenient point,
e.g. right in the middle of the guest reprogramming the device, during
guest reboot or shutdown or while the device is waiting for external IO.
It’s strongly preferred that migrations do not fail in this situation,
since in the cloud environment migrations might happen automatically to
VMs that the administrator doesn’t directly control.

	If you do need to fail a migration, ensure that sufficient information
is logged to identify what went wrong.

	The destination should treat an incoming migration stream as hostile
(which we do to varying degrees in the existing code). Check that offsets
into buffers and the like can’t cause overruns. Fail the incoming migration
in the case of a corrupted stream like this.

	Take care with internal device state or behaviour that might become
migration version dependent. For example, the order of PCI capabilities
is required to stay constant across migration. Another example would
be that a special case handled by subsections (see below) might become
much more common if a default behaviour is changed.

	The state of the source should not be changed or destroyed by the
outgoing migration. Migrations timing out or being failed by
higher levels of management, or failures of the destination host are
not unusual, and in that case the VM is restarted on the source.
Note that the management layer can validly revert the migration
even though the QEMU level of migration has succeeded as long as it
does it before starting execution on the destination.

	Buses and devices should be able to explicitly specify addresses when
instantiated, and management tools should use those. For example,
when hot adding USB devices it’s important to specify the ports
and addresses, since implicit ordering based on the command line order
may be different on the destination. This can result in the
device state being loaded into the wrong device.

VMState

Most device data can be described using the VMSTATE macros (mostly defined
in include/migration/vmstate.h).

An example (from hw/input/pckbd.c)

static const VMStateDescription vmstate_kbd = {
 .name = "pckbd",
 .version_id = 3,
 .minimum_version_id = 3,
 .fields = (VMStateField[]) {
 VMSTATE_UINT8(write_cmd, KBDState),
 VMSTATE_UINT8(status, KBDState),
 VMSTATE_UINT8(mode, KBDState),
 VMSTATE_UINT8(pending, KBDState),
 VMSTATE_END_OF_LIST()
 }
};

We are declaring the state with name “pckbd”.
The version_id is 3, and the fields are 4 uint8_t in a KBDState structure.
We registered this with:

vmstate_register(NULL, 0, &vmstate_kbd, s);

For devices that are qdev based, we can register the device in the class
init function:

dc->vmsd = &vmstate_kbd_isa;

The VMState macros take care of ensuring that the device data section
is formatted portably (normally big endian) and make some compile time checks
against the types of the fields in the structures.

VMState macros can include other VMStateDescriptions to store substructures
(see VMSTATE_STRUCT_), arrays (VMSTATE_ARRAY_) and variable length
arrays (VMSTATE_VARRAY_). Various other macros exist for special
cases.

Note that the format on the wire is still very raw; i.e. a VMSTATE_UINT32
ends up with a 4 byte bigendian representation on the wire; in the future
it might be possible to use a more structured format.

Legacy way

This way is going to disappear as soon as all current users are ported to VMSTATE;
although converting existing code can be tricky, and thus ‘soon’ is relative.

Each device has to register two functions, one to save the state and
another to load the state back.

int register_savevm_live(const char *idstr,
 int instance_id,
 int version_id,
 SaveVMHandlers *ops,
 void *opaque);

Two functions in the ops structure are the save_state
and load_state functions. Notice that load_state receives a version_id
parameter to know what state format is receiving. save_state doesn’t
have a version_id parameter because it always uses the latest version.

Note that because the VMState macros still save the data in a raw
format, in many cases it’s possible to replace legacy code
with a carefully constructed VMState description that matches the
byte layout of the existing code.

Changing migration data structures

When we migrate a device, we save/load the state as a series
of fields. Sometimes, due to bugs or new functionality, we need to
change the state to store more/different information. Changing the migration
state saved for a device can break migration compatibility unless
care is taken to use the appropriate techniques. In general QEMU tries
to maintain forward migration compatibility (i.e. migrating from
QEMU n->n+1) and there are users who benefit from backward compatibility
as well.

Subsections

The most common structure change is adding new data, e.g. when adding
a newer form of device, or adding that state that you previously
forgot to migrate. This is best solved using a subsection.

A subsection is “like” a device vmstate, but with a particularity, it
has a Boolean function that tells if that values are needed to be sent
or not. If this functions returns false, the subsection is not sent.
Subsections have a unique name, that is looked for on the receiving
side.

On the receiving side, if we found a subsection for a device that we
don’t understand, we just fail the migration. If we understand all
the subsections, then we load the state with success. There’s no check
that a subsection is loaded, so a newer QEMU that knows about a subsection
can (with care) load a stream from an older QEMU that didn’t send
the subsection.

If the new data is only needed in a rare case, then the subsection
can be made conditional on that case and the migration will still
succeed to older QEMUs in most cases. This is OK for data that’s
critical, but in some use cases it’s preferred that the migration
should succeed even with the data missing. To support this the
subsection can be connected to a device property and from there
to a versioned machine type.

The ‘pre_load’ and ‘post_load’ functions on subsections are only
called if the subsection is loaded.

One important note is that the outer post_load() function is called “after”
loading all subsections, because a newer subsection could change the same
value that it uses. A flag, and the combination of outer pre_load and
post_load can be used to detect whether a subsection was loaded, and to
fall back on default behaviour when the subsection isn’t present.

Example:

static bool ide_drive_pio_state_needed(void *opaque)
{
 IDEState *s = opaque;

 return ((s->status & DRQ_STAT) != 0)
 || (s->bus->error_status & BM_STATUS_PIO_RETRY);
}

const VMStateDescription vmstate_ide_drive_pio_state = {
 .name = "ide_drive/pio_state",
 .version_id = 1,
 .minimum_version_id = 1,
 .pre_save = ide_drive_pio_pre_save,
 .post_load = ide_drive_pio_post_load,
 .needed = ide_drive_pio_state_needed,
 .fields = (VMStateField[]) {
 VMSTATE_INT32(req_nb_sectors, IDEState),
 VMSTATE_VARRAY_INT32(io_buffer, IDEState, io_buffer_total_len, 1,
 vmstate_info_uint8, uint8_t),
 VMSTATE_INT32(cur_io_buffer_offset, IDEState),
 VMSTATE_INT32(cur_io_buffer_len, IDEState),
 VMSTATE_UINT8(end_transfer_fn_idx, IDEState),
 VMSTATE_INT32(elementary_transfer_size, IDEState),
 VMSTATE_INT32(packet_transfer_size, IDEState),
 VMSTATE_END_OF_LIST()
 }
};

const VMStateDescription vmstate_ide_drive = {
 .name = "ide_drive",
 .version_id = 3,
 .minimum_version_id = 0,
 .post_load = ide_drive_post_load,
 .fields = (VMStateField[]) {
 several fields
 VMSTATE_END_OF_LIST()
 },
 .subsections = (const VMStateDescription*[]) {
 &vmstate_ide_drive_pio_state,
 NULL
 }
};

Here we have a subsection for the pio state. We only need to
save/send this state when we are in the middle of a pio operation
(that is what ide_drive_pio_state_needed() checks). If DRQ_STAT is
not enabled, the values on that fields are garbage and don’t need to
be sent.

Connecting subsections to properties

Using a condition function that checks a ‘property’ to determine whether
to send a subsection allows backward migration compatibility when
new subsections are added, especially when combined with versioned
machine types.

For example:

	Add a new property using DEFINE_PROP_BOOL - e.g. support-foo and
default it to true.

	Add an entry to the hw_compat_ for the previous version that sets
the property to false.

	Add a static bool support_foo function that tests the property.

	Add a subsection with a .needed set to the support_foo function

	(potentially) Add an outer pre_load that sets up a default value
for ‘foo’ to be used if the subsection isn’t loaded.

Now that subsection will not be generated when using an older
machine type and the migration stream will be accepted by older
QEMU versions.

Not sending existing elements

Sometimes members of the VMState are no longer needed:

	removing them will break migration compatibility

	making them version dependent and bumping the version will break backward migration
compatibility.

Adding a dummy field into the migration stream is normally the best way to preserve
compatibility.

If the field really does need to be removed then:

	Add a new property/compatibility/function in the same way for subsections above.

	replace the VMSTATE macro with the _TEST version of the macro, e.g.:

VMSTATE_UINT32(foo, barstruct)

becomes

VMSTATE_UINT32_TEST(foo, barstruct, pre_version_baz)

Sometime in the future when we no longer care about the ancient versions these can be killed off.
Note that for backward compatibility it’s important to fill in the structure with
data that the destination will understand.

Any difference in the predicates on the source and destination will end up
with different fields being enabled and data being loaded into the wrong
fields; for this reason conditional fields like this are very fragile.

Versions

Version numbers are intended for major incompatible changes to the
migration of a device, and using them breaks backward-migration
compatibility; in general most changes can be made by adding Subsections
(see above) or _TEST macros (see above) which won’t break compatibility.

Each version is associated with a series of fields saved. The save_state always saves
the state as the newer version. But load_state sometimes is able to
load state from an older version.

You can see that there are several version fields:

	version_id: the maximum version_id supported by VMState for that device.

	minimum_version_id: the minimum version_id that VMState is able to understand
for that device.

	minimum_version_id_old: For devices that were not able to port to vmstate, we can
assign a function that knows how to read this old state. This field is
ignored if there is no load_state_old handler.

VMState is able to read versions from minimum_version_id to
version_id. And the function load_state_old() (if present) is able to
load state from minimum_version_id_old to minimum_version_id. This
function is deprecated and will be removed when no more users are left.

There are _V forms of many VMSTATE_ macros to load fields for version dependent fields,
e.g.

VMSTATE_UINT16_V(ip_id, Slirp, 2),

only loads that field for versions 2 and newer.

Saving state will always create a section with the ‘version_id’ value
and thus can’t be loaded by any older QEMU.

Massaging functions

Sometimes, it is not enough to be able to save the state directly
from one structure, we need to fill the correct values there. One
example is when we are using kvm. Before saving the cpu state, we
need to ask kvm to copy to QEMU the state that it is using. And the
opposite when we are loading the state, we need a way to tell kvm to
load the state for the cpu that we have just loaded from the QEMUFile.

The functions to do that are inside a vmstate definition, and are called:

	int (*pre_load)(void *opaque);

This function is called before we load the state of one device.

	int (*post_load)(void *opaque, int version_id);

This function is called after we load the state of one device.

	int (*pre_save)(void *opaque);

This function is called before we save the state of one device.

	int (*post_save)(void *opaque);

This function is called after we save the state of one device
(even upon failure, unless the call to pre_save returned an error).

Example: You can look at hpet.c, that uses the first three functions
to massage the state that is transferred.

The VMSTATE_WITH_TMP macro may be useful when the migration
data doesn’t match the stored device data well; it allows an
intermediate temporary structure to be populated with migration
data and then transferred to the main structure.

If you use memory API functions that update memory layout outside
initialization (i.e., in response to a guest action), this is a strong
indication that you need to call these functions in a post_load callback.
Examples of such memory API functions are:

	memory_region_add_subregion()

	memory_region_del_subregion()

	memory_region_set_readonly()

	memory_region_set_nonvolatile()

	memory_region_set_enabled()

	memory_region_set_address()

	memory_region_set_alias_offset()

Iterative device migration

Some devices, such as RAM, Block storage or certain platform devices,
have large amounts of data that would mean that the CPUs would be
paused for too long if they were sent in one section. For these
devices an iterative approach is taken.

The iterative devices generally don’t use VMState macros
(although it may be possible in some cases) and instead use
qemu_put_*/qemu_get_* macros to read/write data to the stream. Specialist
versions exist for high bandwidth IO.

An iterative device must provide:

	A save_setup function that initialises the data structures and
transmits a first section containing information on the device. In the
case of RAM this transmits a list of RAMBlocks and sizes.

	A load_setup function that initialises the data structures on the
destination.

	A save_live_pending function that is called repeatedly and must
indicate how much more data the iterative data must save. The core
migration code will use this to determine when to pause the CPUs
and complete the migration.

	A save_live_iterate function (called after save_live_pending
when there is significant data still to be sent). It should send
a chunk of data until the point that stream bandwidth limits tell it
to stop. Each call generates one section.

	A save_live_complete_precopy function that must transmit the
last section for the device containing any remaining data.

	A load_state function used to load sections generated by
any of the save functions that generate sections.

	cleanup functions for both save and load that are called
at the end of migration.

Note that the contents of the sections for iterative migration tend
to be open-coded by the devices; care should be taken in parsing
the results and structuring the stream to make them easy to validate.

Device ordering

There are cases in which the ordering of device loading matters; for
example in some systems where a device may assert an interrupt during loading,
if the interrupt controller is loaded later then it might lose the state.

Some ordering is implicitly provided by the order in which the machine
definition creates devices, however this is somewhat fragile.

The MigrationPriority enum provides a means of explicitly enforcing
ordering. Numerically higher priorities are loaded earlier.
The priority is set by setting the priority field of the top level
VMStateDescription for the device.

Stream structure

The stream tries to be word and endian agnostic, allowing migration between hosts
of different characteristics running the same VM.

	Header

	Magic

	Version

	VM configuration section

	Machine type

	Target page bits

	List of sections
Each section contains a device, or one iteration of a device save.

	section type

	section id

	ID string (First section of each device)

	instance id (First section of each device)

	version id (First section of each device)

	<device data>

	Footer mark

	EOF mark

	VM Description structure
Consisting of a JSON description of the contents for analysis only

The device data in each section consists of the data produced
by the code described above. For non-iterative devices they have a single
section; iterative devices have an initial and last section and a set
of parts in between.
Note that there is very little checking by the common code of the integrity
of the device data contents, that’s up to the devices themselves.
The footer mark provides a little bit of protection for the case where
the receiving side reads more or less data than expected.

The ID string is normally unique, having been formed from a bus name
and device address, PCI devices and storage devices hung off PCI controllers
fit this pattern well. Some devices are fixed single instances (e.g. “pc-ram”).
Others (especially either older devices or system devices which for
some reason don’t have a bus concept) make use of the instance id
for otherwise identically named devices.

Return path

Only a unidirectional stream is required for normal migration, however a
return path can be created when bidirectional communication is desired.
This is primarily used by postcopy, but is also used to return a success
flag to the source at the end of migration.

qemu_file_get_return_path(QEMUFile* fwdpath) gives the QEMUFile* for the return
path.

Source side

Forward path - written by migration thread
Return path - opened by main thread, read by return-path thread

Destination side

Forward path - read by main thread
Return path - opened by main thread, written by main thread AND postcopy
thread (protected by rp_mutex)

Postcopy

‘Postcopy’ migration is a way to deal with migrations that refuse to converge
(or take too long to converge) its plus side is that there is an upper bound on
the amount of migration traffic and time it takes, the down side is that during
the postcopy phase, a failure of either side or the network connection causes
the guest to be lost.

In postcopy the destination CPUs are started before all the memory has been
transferred, and accesses to pages that are yet to be transferred cause
a fault that’s translated by QEMU into a request to the source QEMU.

Postcopy can be combined with precopy (i.e. normal migration) so that if precopy
doesn’t finish in a given time the switch is made to postcopy.

Enabling postcopy

To enable postcopy, issue this command on the monitor (both source and
destination) prior to the start of migration:

migrate_set_capability postcopy-ram on

The normal commands are then used to start a migration, which is still
started in precopy mode. Issuing:

migrate_start_postcopy

will now cause the transition from precopy to postcopy.
It can be issued immediately after migration is started or any
time later on. Issuing it after the end of a migration is harmless.

Blocktime is a postcopy live migration metric, intended to show how
long the vCPU was in state of interruptable sleep due to pagefault.
That metric is calculated both for all vCPUs as overlapped value, and
separately for each vCPU. These values are calculated on destination
side. To enable postcopy blocktime calculation, enter following
command on destination monitor:

migrate_set_capability postcopy-blocktime on

Postcopy blocktime can be retrieved by query-migrate qmp command.
postcopy-blocktime value of qmp command will show overlapped blocking
time for all vCPU, postcopy-vcpu-blocktime will show list of blocking
time per vCPU.

Note

During the postcopy phase, the bandwidth limits set using
migrate_set_speed is ignored (to avoid delaying requested pages that
the destination is waiting for).

Postcopy device transfer

Loading of device data may cause the device emulation to access guest RAM
that may trigger faults that have to be resolved by the source, as such
the migration stream has to be able to respond with page data during the
device load, and hence the device data has to be read from the stream completely
before the device load begins to free the stream up. This is achieved by
‘packaging’ the device data into a blob that’s read in one go.

Source behaviour

Until postcopy is entered the migration stream is identical to normal
precopy, except for the addition of a ‘postcopy advise’ command at
the beginning, to tell the destination that postcopy might happen.
When postcopy starts the source sends the page discard data and then
forms the ‘package’ containing:

	Command: ‘postcopy listen’

	The device state

A series of sections, identical to the precopy streams device state stream
containing everything except postcopiable devices (i.e. RAM)

	Command: ‘postcopy run’

The ‘package’ is sent as the data part of a Command: CMD_PACKAGED, and the
contents are formatted in the same way as the main migration stream.

During postcopy the source scans the list of dirty pages and sends them
to the destination without being requested (in much the same way as precopy),
however when a page request is received from the destination, the dirty page
scanning restarts from the requested location. This causes requested pages
to be sent quickly, and also causes pages directly after the requested page
to be sent quickly in the hope that those pages are likely to be used
by the destination soon.

Destination behaviour

Initially the destination looks the same as precopy, with a single thread
reading the migration stream; the ‘postcopy advise’ and ‘discard’ commands
are processed to change the way RAM is managed, but don’t affect the stream
processing.

--
 1 2 3 4 5 6 7
main -----DISCARD-CMD_PACKAGED (LISTEN DEVICE DEVICE DEVICE RUN)
thread | |
 | (page request)
 | ___
 v \
listen thread: --- page -- page -- page -- page -- page --

 a b c
--

	On receipt of CMD_PACKAGED (1)

All the data associated with the package - the (…) section in the diagram -
is read into memory, and the main thread recurses into qemu_loadvm_state_main
to process the contents of the package (2) which contains commands (3,6) and
devices (4…)

	On receipt of ‘postcopy listen’ - 3 -(i.e. the 1st command in the package)

a new thread (a) is started that takes over servicing the migration stream,
while the main thread carries on loading the package. It loads normal
background page data (b) but if during a device load a fault happens (5)
the returned page (c) is loaded by the listen thread allowing the main
threads device load to carry on.

	The last thing in the CMD_PACKAGED is a ‘RUN’ command (6)

letting the destination CPUs start running. At the end of the
CMD_PACKAGED (7) the main thread returns to normal running behaviour and
is no longer used by migration, while the listen thread carries on servicing
page data until the end of migration.

Postcopy states

Postcopy moves through a series of states (see postcopy_state) from
ADVISE->DISCARD->LISTEN->RUNNING->END

	Advise

Set at the start of migration if postcopy is enabled, even
if it hasn’t had the start command; here the destination
checks that its OS has the support needed for postcopy, and performs
setup to ensure the RAM mappings are suitable for later postcopy.
The destination will fail early in migration at this point if the
required OS support is not present.
(Triggered by reception of POSTCOPY_ADVISE command)

	Discard

Entered on receipt of the first ‘discard’ command; prior to
the first Discard being performed, hugepages are switched off
(using madvise) to ensure that no new huge pages are created
during the postcopy phase, and to cause any huge pages that
have discards on them to be broken.

	Listen

The first command in the package, POSTCOPY_LISTEN, switches
the destination state to Listen, and starts a new thread
(the ‘listen thread’) which takes over the job of receiving
pages off the migration stream, while the main thread carries
on processing the blob. With this thread able to process page
reception, the destination now ‘sensitises’ the RAM to detect
any access to missing pages (on Linux using the ‘userfault’
system).

	Running

POSTCOPY_RUN causes the destination to synchronise all
state and start the CPUs and IO devices running. The main
thread now finishes processing the migration package and
now carries on as it would for normal precopy migration
(although it can’t do the cleanup it would do as it
finishes a normal migration).

	End

The listen thread can now quit, and perform the cleanup of migration
state, the migration is now complete.

Source side page maps

The source side keeps two bitmaps during postcopy; ‘the migration bitmap’
and ‘unsent map’. The ‘migration bitmap’ is basically the same as in
the precopy case, and holds a bit to indicate that page is ‘dirty’ -
i.e. needs sending. During the precopy phase this is updated as the CPU
dirties pages, however during postcopy the CPUs are stopped and nothing
should dirty anything any more.

The ‘unsent map’ is used for the transition to postcopy. It is a bitmap that
has a bit cleared whenever a page is sent to the destination, however during
the transition to postcopy mode it is combined with the migration bitmap
to form a set of pages that:

	Have been sent but then redirtied (which must be discarded)

	Have not yet been sent - which also must be discarded to cause any
transparent huge pages built during precopy to be broken.

Note that the contents of the unsentmap are sacrificed during the calculation
of the discard set and thus aren’t valid once in postcopy. The dirtymap
is still valid and is used to ensure that no page is sent more than once. Any
request for a page that has already been sent is ignored. Duplicate requests
such as this can happen as a page is sent at about the same time the
destination accesses it.

Postcopy with hugepages

Postcopy now works with hugetlbfs backed memory:

	The linux kernel on the destination must support userfault on hugepages.

	The huge-page configuration on the source and destination VMs must be
identical; i.e. RAMBlocks on both sides must use the same page size.

	Note that -mem-path /dev/hugepages will fall back to allocating normal
RAM if it doesn’t have enough hugepages, triggering (b) to fail.
Using -mem-prealloc enforces the allocation using hugepages.

	Care should be taken with the size of hugepage used; postcopy with 2MB
hugepages works well, however 1GB hugepages are likely to be problematic
since it takes ~1 second to transfer a 1GB hugepage across a 10Gbps link,
and until the full page is transferred the destination thread is blocked.

Postcopy with shared memory

Postcopy migration with shared memory needs explicit support from the other
processes that share memory and from QEMU. There are restrictions on the type of
memory that userfault can support shared.

The Linux kernel userfault support works on /dev/shm memory and on hugetlbfs
(although the kernel doesn’t provide an equivalent to madvise(MADV_DONTNEED)
for hugetlbfs which may be a problem in some configurations).

The vhost-user code in QEMU supports clients that have Postcopy support,
and the vhost-user-bridge (in tests/) and the DPDK package have changes
to support postcopy.

The client needs to open a userfaultfd and register the areas
of memory that it maps with userfault. The client must then pass the
userfaultfd back to QEMU together with a mapping table that allows
fault addresses in the clients address space to be converted back to
RAMBlock/offsets. The client’s userfaultfd is added to the postcopy
fault-thread and page requests are made on behalf of the client by QEMU.
QEMU performs ‘wake’ operations on the client’s userfaultfd to allow it
to continue after a page has arrived.

Note

	There are two future improvements that would be nice:

	
	Some way to make QEMU ignorant of the addresses in the clients
address space

	Avoiding the need for QEMU to perform ufd-wake calls after the
pages have arrived

	Retro-fitting postcopy to existing clients is possible:

	
	A mechanism is needed for the registration with userfault as above,
and the registration needs to be coordinated with the phases of
postcopy. In vhost-user extra messages are added to the existing
control channel.

	Any thread that can block due to guest memory accesses must be
identified and the implication understood; for example if the
guest memory access is made while holding a lock then all other
threads waiting for that lock will also be blocked.

Firmware

Migration migrates the copies of RAM and ROM, and thus when running
on the destination it includes the firmware from the source. Even after
resetting a VM, the old firmware is used. Only once QEMU has been restarted
is the new firmware in use.

	Changes in firmware size can cause changes in the required RAMBlock size
to hold the firmware and thus migration can fail. In practice it’s best
to pad firmware images to convenient powers of 2 with plenty of space
for growth.

	Care should be taken with device emulation code so that newer
emulation code can work with older firmware to allow forward migration.

	Care should be taken with newer firmware so that backward migration
to older systems with older device emulation code will work.

In some cases it may be best to tie specific firmware versions to specific
versioned machine types to cut down on the combinations that will need
support. This is also useful when newer versions of firmware outgrow
the padding.

QEMU and the stable process

QEMU stable releases

QEMU stable releases are based upon the last released QEMU version
and marked by an additional version number, e.g. 2.10.1. Occasionally,
a four-number version is released, if a single urgent fix needs to go
on top.

Usually, stable releases are only provided for the last major QEMU
release. For example, when QEMU 2.11.0 is released, 2.11.x or 2.11.x.y
stable releases are produced only until QEMU 2.12.0 is released, at
which point the stable process moves to producing 2.12.x/2.12.x.y releases.

What should go into a stable release?

Generally, the following patches are considered stable material:

	Patches that fix severe issues, like fixes for CVEs

	Patches that fix regressions

If you think the patch would be important for users of the current release
(or for a distribution picking fixes), it is usually a good candidate
for stable.

How to get a patch into QEMU stable

There are various ways to get a patch into stable:

	Preferred: Make sure that the stable maintainers are on copy when you send
the patch by adding

Cc: qemu-stable@nongnu.org

to the patch description. By default, this will send a copy of the patch
to qemu-stable@nongnu.org if you use git send-email, which is where
patches that are stable candidates are tracked by the maintainers.

	You can also reply to a patch and put qemu-stable@nongnu.org on copy
directly in your mail client if you think a previously submitted patch
should be considered for a stable release.

	If a maintainer judges the patch appropriate for stable later on (or you
notify them), they will add the same line to the patch, meaning that
the stable maintainers will be on copy on the maintainer’s pull request.

	If you judge an already merged patch suitable for stable, send a mail
(preferably as a reply to the most recent patch submission) to
qemu-stable@nongnu.org along with qemu-devel@nongnu.org and
appropriate other people (like the patch author or the relevant maintainer)
on copy.

Stable release process

When the stable maintainers prepare a new stable release, they will prepare
a git branch with a release candidate and send the patches out to
qemu-devel@nongnu.org for review. If any of your patches are included,
please verify that they look fine, especially if the maintainer had to tweak
the patch as part of back-porting things across branches. You may also
nominate other patches that you think are suitable for inclusion. After
review is complete (may involve more release candidates), a new stable release
is made available.

Testing in QEMU

This document describes the testing infrastructure in QEMU.

Testing with “make check”

The “make check” testing family includes most of the C based tests in QEMU. For
a quick help, run make check-help from the source tree.

The usual way to run these tests is:

make check

which includes QAPI schema tests, unit tests, QTests and some iotests.
Different sub-types of “make check” tests will be explained below.

Before running tests, it is best to build QEMU programs first. Some tests
expect the executables to exist and will fail with obscure messages if they
cannot find them.

Unit tests

Unit tests, which can be invoked with make check-unit, are simple C tests
that typically link to individual QEMU object files and exercise them by
calling exported functions.

If you are writing new code in QEMU, consider adding a unit test, especially
for utility modules that are relatively stateless or have few dependencies. To
add a new unit test:

	Create a new source file. For example, tests/foo-test.c.

	Write the test. Normally you would include the header file which exports
the module API, then verify the interface behaves as expected from your
test. The test code should be organized with the glib testing framework.
Copying and modifying an existing test is usually a good idea.

	Add the test to tests/Makefile.include. First, name the unit test
program and add it to $(check-unit-y); then add a rule to build the
executable. For example:

check-unit-y += tests/foo-test$(EXESUF)
tests/foo-test$(EXESUF): tests/foo-test.o $(test-util-obj-y)
...

Since unit tests don’t require environment variables, the simplest way to debug
a unit test failure is often directly invoking it or even running it under
gdb. However there can still be differences in behavior between make
invocations and your manual run, due to $MALLOC_PERTURB_ environment
variable (which affects memory reclamation and catches invalid pointers better)
and gtester options. If necessary, you can run

make check-unit V=1

and copy the actual command line which executes the unit test, then run
it from the command line.

QTest

QTest is a device emulation testing framework. It can be very useful to test
device models; it could also control certain aspects of QEMU (such as virtual
clock stepping), with a special purpose “qtest” protocol. Refer to the
documentation in qtest.c for more details of the protocol.

QTest cases can be executed with

make check-qtest

The QTest library is implemented by tests/qtest/libqtest.c and the API is
defined in tests/qtest/libqtest.h.

Consider adding a new QTest case when you are introducing a new virtual
hardware, or extending one if you are adding functionalities to an existing
virtual device.

On top of libqtest, a higher level library, libqos, was created to
encapsulate common tasks of device drivers, such as memory management and
communicating with system buses or devices. Many virtual device tests use
libqos instead of directly calling into libqtest.

Steps to add a new QTest case are:

	Create a new source file for the test. (More than one file can be added as
necessary.) For example, tests/qtest/foo-test.c.

	Write the test code with the glib and libqtest/libqos API. See also existing
tests and the library headers for reference.

	Register the new test in tests/qtest/Makefile.include. Add the test
executable name to an appropriate check-qtest-*-y variable. For example:

check-qtest-generic-y = tests/qtest/foo-test$(EXESUF)

	Add object dependencies of the executable in the Makefile, including the
test source file(s) and other interesting objects. For example:

tests/qtest/foo-test$(EXESUF): tests/qtest/foo-test.o $(libqos-obj-y)

Debugging a QTest failure is slightly harder than the unit test because the
tests look up QEMU program names in the environment variables, such as
QTEST_QEMU_BINARY and QTEST_QEMU_IMG, and also because it is not easy
to attach gdb to the QEMU process spawned from the test. But manual invoking
and using gdb on the test is still simple to do: find out the actual command
from the output of

make check-qtest V=1

which you can run manually.

QAPI schema tests

The QAPI schema tests validate the QAPI parser used by QMP, by feeding
predefined input to the parser and comparing the result with the reference
output.

The input/output data is managed under the tests/qapi-schema directory.
Each test case includes four files that have a common base name:

	${casename}.json - the file contains the JSON input for feeding the
parser

	${casename}.out - the file contains the expected stdout from the parser

	${casename}.err - the file contains the expected stderr from the parser

	${casename}.exit - the expected error code

Consider adding a new QAPI schema test when you are making a change on the QAPI
parser (either fixing a bug or extending/modifying the syntax). To do this:

	Add four files for the new case as explained above. For example:

$EDITOR tests/qapi-schema/foo.{json,out,err,exit}.

	Add the new test in tests/Makefile.include. For example:

qapi-schema += foo.json

check-block

make check-block runs a subset of the block layer iotests (the tests that
are in the “auto” group in tests/qemu-iotests/group).
See the “QEMU iotests” section below for more information.

GCC gcov support

gcov is a GCC tool to analyze the testing coverage by
instrumenting the tested code. To use it, configure QEMU with
--enable-gcov option and build. Then run make check as usual.

If you want to gather coverage information on a single test the make
clean-coverage target can be used to delete any existing coverage
information before running a single test.

You can generate a HTML coverage report by executing make
coverage-report which will create
./reports/coverage/coverage-report.html. If you want to create it
elsewhere simply execute make /foo/bar/baz/coverage-report.html.

Further analysis can be conducted by running the gcov command
directly on the various .gcda output files. Please read the gcov
documentation for more information.

QEMU iotests

QEMU iotests, under the directory tests/qemu-iotests, is the testing
framework widely used to test block layer related features. It is higher level
than “make check” tests and 99% of the code is written in bash or Python
scripts. The testing success criteria is golden output comparison, and the
test files are named with numbers.

To run iotests, make sure QEMU is built successfully, then switch to the
tests/qemu-iotests directory under the build directory, and run ./check
with desired arguments from there.

By default, “raw” format and “file” protocol is used; all tests will be
executed, except the unsupported ones. You can override the format and protocol
with arguments:

test with qcow2 format
./check -qcow2
or test a different protocol
./check -nbd

It’s also possible to list test numbers explicitly:

run selected cases with qcow2 format
./check -qcow2 001 030 153

Cache mode can be selected with the “-c” option, which may help reveal bugs
that are specific to certain cache mode.

More options are supported by the ./check script, run ./check -h for
help.

Writing a new test case

Consider writing a tests case when you are making any changes to the block
layer. An iotest case is usually the choice for that. There are already many
test cases, so it is possible that extending one of them may achieve the goal
and save the boilerplate to create one. (Unfortunately, there isn’t a 100%
reliable way to find a related one out of hundreds of tests. One approach is
using git grep.)

Usually an iotest case consists of two files. One is an executable that
produces output to stdout and stderr, the other is the expected reference
output. They are given the same number in file names. E.g. Test script 055
and reference output 055.out.

In rare cases, when outputs differ between cache mode none and others, a
.out.nocache file is added. In other cases, when outputs differ between
image formats, more than one .out files are created ending with the
respective format names, e.g. 178.out.qcow2 and 178.out.raw.

There isn’t a hard rule about how to write a test script, but a new test is
usually a (copy and) modification of an existing case. There are a few
commonly used ways to create a test:

	A Bash script. It will make use of several environmental variables related
to the testing procedure, and could source a group of common.* libraries
for some common helper routines.

	A Python unittest script. Import iotests and create a subclass of
iotests.QMPTestCase, then call iotests.main method. The downside of
this approach is that the output is too scarce, and the script is considered
harder to debug.

	A simple Python script without using unittest module. This could also import
iotests for launching QEMU and utilities etc, but it doesn’t inherit
from iotests.QMPTestCase therefore doesn’t use the Python unittest
execution. This is a combination of 1 and 2.

Pick the language per your preference since both Bash and Python have
comparable library support for invoking and interacting with QEMU programs. If
you opt for Python, it is strongly recommended to write Python 3 compatible
code.

Both Python and Bash frameworks in iotests provide helpers to manage test
images. They can be used to create and clean up images under the test
directory. If no I/O or any protocol specific feature is needed, it is often
more convenient to use the pseudo block driver, null-co://, as the test
image, which doesn’t require image creation or cleaning up. Avoid system-wide
devices or files whenever possible, such as /dev/null or /dev/zero.
Otherwise, image locking implications have to be considered. For example,
another application on the host may have locked the file, possibly leading to a
test failure. If using such devices are explicitly desired, consider adding
locking=off option to disable image locking.

Docker based tests

Introduction

The Docker testing framework in QEMU utilizes public Docker images to build and
test QEMU in predefined and widely accessible Linux environments. This makes
it possible to expand the test coverage across distros, toolchain flavors and
library versions.

Prerequisites

Install “docker” with the system package manager and start the Docker service
on your development machine, then make sure you have the privilege to run
Docker commands. Typically it means setting up passwordless sudo docker
command or login as root. For example:

$ sudo yum install docker
$ # or `apt-get install docker` for Ubuntu, etc.
$ sudo systemctl start docker
$ sudo docker ps

The last command should print an empty table, to verify the system is ready.

An alternative method to set up permissions is by adding the current user to
“docker” group and making the docker daemon socket file (by default
/var/run/docker.sock) accessible to the group:

$ sudo groupadd docker
$ sudo usermod $USER -a -G docker
$ sudo chown :docker /var/run/docker.sock

Note that any one of above configurations makes it possible for the user to
exploit the whole host with Docker bind mounting or other privileged
operations. So only do it on development machines.

Quickstart

From source tree, type make docker to see the help. Testing can be started
without configuring or building QEMU (configure and make are done in
the container, with parameters defined by the make target):

make docker-test-build@min-glib

This will create a container instance using the min-glib image (the image
is downloaded and initialized automatically), in which the test-build job
is executed.

Images

Along with many other images, the min-glib image is defined in a Dockerfile
in tests/docker/dockerfiles/, called min-glib.docker. make docker
command will list all the available images.

To add a new image, simply create a new .docker file under the
tests/docker/dockerfiles/ directory.

A .pre script can be added beside the .docker file, which will be
executed before building the image under the build context directory. This is
mainly used to do necessary host side setup. One such setup is binfmt_misc,
for example, to make qemu-user powered cross build containers work.

Tests

Different tests are added to cover various configurations to build and test
QEMU. Docker tests are the executables under tests/docker named
test-*. They are typically shell scripts and are built on top of a shell
library, tests/docker/common.rc, which provides helpers to find the QEMU
source and build it.

The full list of tests is printed in the make docker help.

Tools

There are executables that are created to run in a specific Docker environment.
This makes it easy to write scripts that have heavy or special dependencies,
but are still very easy to use.

Currently the only tool is travis, which mimics the Travis-CI tests in a
container. It runs in the travis image:

make docker-travis@travis

Debugging a Docker test failure

When CI tasks, maintainers or yourself report a Docker test failure, follow the
below steps to debug it:

	Locally reproduce the failure with the reported command line. E.g. run
make docker-test-mingw@fedora J=8.

	Add “V=1” to the command line, try again, to see the verbose output.

	Further add “DEBUG=1” to the command line. This will pause in a shell prompt
in the container right before testing starts. You could either manually
build QEMU and run tests from there, or press Ctrl-D to let the Docker
testing continue.

	If you press Ctrl-D, the same building and testing procedure will begin, and
will hopefully run into the error again. After that, you will be dropped to
the prompt for debug.

Options

Various options can be used to affect how Docker tests are done. The full
list is in the make docker help text. The frequently used ones are:

	V=1: the same as in top level make. It will be propagated to the
container and enable verbose output.

	J=$N: the number of parallel tasks in make commands in the container,
similar to the -j $N option in top level make. (The -j option in
top level make will not be propagated into the container.)

	DEBUG=1: enables debug. See the previous “Debugging a Docker test
failure” section.

VM testing

This test suite contains scripts that bootstrap various guest images that have
necessary packages to build QEMU. The basic usage is documented in Makefile
help which is displayed with make vm-help.

Quickstart

Run make vm-help to list available make targets. Invoke a specific make
command to run build test in an image. For example, make vm-build-freebsd
will build the source tree in the FreeBSD image. The command can be executed
from either the source tree or the build dir; if the former, ./configure is
not needed. The command will then generate the test image in ./tests/vm/
under the working directory.

Note: images created by the scripts accept a well-known RSA key pair for SSH
access, so they SHOULD NOT be exposed to external interfaces if you are
concerned about attackers taking control of the guest and potentially
exploiting a QEMU security bug to compromise the host.

QEMU binaries

By default, qemu-system-x86_64 is searched in $PATH to run the guest. If there
isn’t one, or if it is older than 2.10, the test won’t work. In this case,
provide the QEMU binary in env var: QEMU=/path/to/qemu-2.10+.

Likewise the path to qemu-img can be set in QEMU_IMG environment variable.

Make jobs

The -j$X option in the make command line is not propagated into the VM,
specify J=$X to control the make jobs in the guest.

Debugging

Add DEBUG=1 and/or V=1 to the make command to allow interactive
debugging and verbose output. If this is not enough, see the next section.
V=1 will be propagated down into the make jobs in the guest.

Manual invocation

Each guest script is an executable script with the same command line options.
For example to work with the netbsd guest, use $QEMU_SRC/tests/vm/netbsd:

$ cd $QEMU_SRC/tests/vm

To bootstrap the image
$./netbsd --build-image --image /var/tmp/netbsd.img
<...>

To run an arbitrary command in guest (the output will not be echoed unless
--debug is added)
$./netbsd --debug --image /var/tmp/netbsd.img uname -a

To build QEMU in guest
$./netbsd --debug --image /var/tmp/netbsd.img --build-qemu $QEMU_SRC

To get to an interactive shell
$./netbsd --interactive --image /var/tmp/netbsd.img sh

Adding new guests

Please look at existing guest scripts for how to add new guests.

Most importantly, create a subclass of BaseVM and implement build_image()
method and define BUILD_SCRIPT, then finally call basevm.main() from
the script’s main().

	Usually in build_image(), a template image is downloaded from a
predefined URL. BaseVM._download_with_cache() takes care of the cache and
the checksum, so consider using it.

	Once the image is downloaded, users, SSH server and QEMU build deps should
be set up:

	Root password set to BaseVM.ROOT_PASS

	User BaseVM.GUEST_USER is created, and password set to
BaseVM.GUEST_PASS

	SSH service is enabled and started on boot,
$QEMU_SRC/tests/keys/id_rsa.pub is added to ssh’s authorized_keys
file of both root and the normal user

	DHCP client service is enabled and started on boot, so that it can
automatically configure the virtio-net-pci NIC and communicate with QEMU
user net (10.0.2.2)

	Necessary packages are installed to untar the source tarball and build
QEMU

	Write a proper BUILD_SCRIPT template, which should be a shell script that
untars a raw virtio-blk block device, which is the tarball data blob of the
QEMU source tree, then configure/build it. Running “make check” is also
recommended.

Image fuzzer testing

An image fuzzer was added to exercise format drivers. Currently only qcow2 is
supported. To start the fuzzer, run

tests/image-fuzzer/runner.py -c '[["qemu-img", "info", "$test_img"]]' /tmp/test qcow2

Alternatively, some command different from “qemu-img info” can be tested, by
changing the -c option.

Acceptance tests using the Avocado Framework

The tests/acceptance directory hosts functional tests, also known
as acceptance level tests. They’re usually higher level tests, and
may interact with external resources and with various guest operating
systems.

These tests are written using the Avocado Testing Framework (which must
be installed separately) in conjunction with a the avocado_qemu.Test
class, implemented at tests/acceptance/avocado_qemu.

Tests based on avocado_qemu.Test can easily:

	Customize the command line arguments given to the convenience
self.vm attribute (a QEMUMachine instance)

	Interact with the QEMU monitor, send QMP commands and check
their results

	Interact with the guest OS, using the convenience console device
(which may be useful to assert the effectiveness and correctness of
command line arguments or QMP commands)

	Interact with external data files that accompany the test itself
(see self.get_data())

	Download (and cache) remote data files, such as firmware and kernel
images

	Have access to a library of guest OS images (by means of the
avocado.utils.vmimage library)

	Make use of various other test related utilities available at the
test class itself and at the utility library:

	http://avocado-framework.readthedocs.io/en/latest/api/test/avocado.html#avocado.Test

	http://avocado-framework.readthedocs.io/en/latest/api/utils/avocado.utils.html

Running tests

You can run the acceptance tests simply by executing:

make check-acceptance

This involves the automatic creation of Python virtual environment
within the build tree (at tests/venv) which will have all the
right dependencies, and will save tests results also within the
build tree (at tests/results).

Note: the build environment must be using a Python 3 stack, and have
the venv and pip packages installed. If necessary, make sure
configure is called with --python= and that those modules are
available. On Debian and Ubuntu based systems, depending on the
specific version, they may be on packages named python3-venv and
python3-pip.

The scripts installed inside the virtual environment may be used
without an “activation”. For instance, the Avocado test runner
may be invoked by running:

tests/venv/bin/avocado run $OPTION1 $OPTION2 tests/acceptance/

Manual Installation

To manually install Avocado and its dependencies, run:

pip install --user avocado-framework

Alternatively, follow the instructions on this link:

http://avocado-framework.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado

Overview

The tests/acceptance/avocado_qemu directory provides the
avocado_qemu Python module, containing the avocado_qemu.Test
class. Here’s a simple usage example:

from avocado_qemu import Test

class Version(Test):
 """
 :avocado: tags=quick
 """
 def test_qmp_human_info_version(self):
 self.vm.launch()
 res = self.vm.command('human-monitor-command',
 command_line='info version')
 self.assertRegexpMatches(res, r'^(\d+\.\d+\.\d)')

To execute your test, run:

avocado run version.py

Tests may be classified according to a convention by using docstring
directives such as :avocado: tags=TAG1,TAG2. To run all tests
in the current directory, tagged as “quick”, run:

avocado run -t quick .

The avocado_qemu.Test base test class

The avocado_qemu.Test class has a number of characteristics that
are worth being mentioned right away.

First of all, it attempts to give each test a ready to use QEMUMachine
instance, available at self.vm. Because many tests will tweak the
QEMU command line, launching the QEMUMachine (by using self.vm.launch())
is left to the test writer.

The base test class has also support for tests with more than one
QEMUMachine. The way to get machines is through the self.get_vm()
method which will return a QEMUMachine instance. The self.get_vm()
method accepts arguments that will be passed to the QEMUMachine creation
and also an optional name attribute so you can identify a specific
machine and get it more than once through the tests methods. A simple
and hypothetical example follows:

from avocado_qemu import Test

class MultipleMachines(Test):
 """
 :avocado: enable
 """
 def test_multiple_machines(self):
 first_machine = self.get_vm()
 second_machine = self.get_vm()
 self.get_vm(name='third_machine').launch()

 first_machine.launch()
 second_machine.launch()

 first_res = first_machine.command(
 'human-monitor-command',
 command_line='info version')

 second_res = second_machine.command(
 'human-monitor-command',
 command_line='info version')

 third_res = self.get_vm(name='third_machine').command(
 'human-monitor-command',
 command_line='info version')

 self.assertEquals(first_res, second_res, third_res)

At test “tear down”, avocado_qemu.Test handles all the QEMUMachines
shutdown.

QEMUMachine

The QEMUMachine API is already widely used in the Python iotests,
device-crash-test and other Python scripts. It’s a wrapper around the
execution of a QEMU binary, giving its users:

	the ability to set command line arguments to be given to the QEMU
binary

	a ready to use QMP connection and interface, which can be used to
send commands and inspect its results, as well as asynchronous
events

	convenience methods to set commonly used command line arguments in
a more succinct and intuitive way

QEMU binary selection

The QEMU binary used for the self.vm QEMUMachine instance will
primarily depend on the value of the qemu_bin parameter. If it’s
not explicitly set, its default value will be the result of a dynamic
probe in the same source tree. A suitable binary will be one that
targets the architecture matching host machine.

Based on this description, test writers will usually rely on one of
the following approaches:

	Set qemu_bin, and use the given binary

	Do not set qemu_bin, and use a QEMU binary named like
“${arch}-softmmu/qemu-system-${arch}”, either in the current
working directory, or in the current source tree.

The resulting qemu_bin value will be preserved in the
avocado_qemu.Test as an attribute with the same name.

Attribute reference

Besides the attributes and methods that are part of the base
avocado.Test class, the following attributes are available on any
avocado_qemu.Test instance.

vm

A QEMUMachine instance, initially configured according to the given
qemu_bin parameter.

arch

The architecture can be used on different levels of the stack, e.g. by
the framework or by the test itself. At the framework level, it will
currently influence the selection of a QEMU binary (when one is not
explicitly given).

Tests are also free to use this attribute value, for their own needs.
A test may, for instance, use the same value when selecting the
architecture of a kernel or disk image to boot a VM with.

The arch attribute will be set to the test parameter of the same
name. If one is not given explicitly, it will either be set to
None, or, if the test is tagged with one (and only one)
:avocado: tags=arch:VALUE tag, it will be set to VALUE.

machine

The machine type that will be set to all QEMUMachine instances created
by the test.

The machine attribute will be set to the test parameter of the same
name. If one is not given explicitly, it will either be set to
None, or, if the test is tagged with one (and only one)
:avocado: tags=machine:VALUE tag, it will be set to VALUE.

qemu_bin

The preserved value of the qemu_bin parameter or the result of the
dynamic probe for a QEMU binary in the current working directory or
source tree.

Parameter reference

To understand how Avocado parameters are accessed by tests, and how
they can be passed to tests, please refer to:

http://avocado-framework.readthedocs.io/en/latest/WritingTests.html#accessing-test-parameters

Parameter values can be easily seen in the log files, and will look
like the following:

PARAMS (key=qemu_bin, path=*, default=x86_64-softmmu/qemu-system-x86_64) => 'x86_64-softmmu/qemu-system-x86_64

arch

The architecture that will influence the selection of a QEMU binary
(when one is not explicitly given).

Tests are also free to use this parameter value, for their own needs.
A test may, for instance, use the same value when selecting the
architecture of a kernel or disk image to boot a VM with.

This parameter has a direct relation with the arch attribute. If
not given, it will default to None.

machine

The machine type that will be set to all QEMUMachine instances created
by the test.

qemu_bin

The exact QEMU binary to be used on QEMUMachine.

Uninstalling Avocado

If you’ve followed the manual installation instructions above, you can
easily uninstall Avocado. Start by listing the packages you have
installed:

pip list --user

And remove any package you want with:

pip uninstall <package_name>

If you’ve used make check-acceptance, the Python virtual environment where
Avocado is installed will be cleaned up as part of make check-clean.

Testing with “make check-tcg”

The check-tcg tests are intended for simple smoke tests of both
linux-user and softmmu TCG functionality. However to build test
programs for guest targets you need to have cross compilers available.
If your distribution supports cross compilers you can do something as
simple as:

apt install gcc-aarch64-linux-gnu

The configure script will automatically pick up their presence.
Sometimes compilers have slightly odd names so the availability of
them can be prompted by passing in the appropriate configure option
for the architecture in question, for example:

$(configure) --cross-cc-aarch64=aarch64-cc

There is also a --cross-cc-flags-ARCH flag in case additional
compiler flags are needed to build for a given target.

If you have the ability to run containers as the user you can also
take advantage of the build systems “Docker” support. It will then use
containers to build any test case for an enabled guest where there is
no system compiler available. See :ref: _docker-ref for details.

Running subset of tests

You can build the tests for one architecture:

make build-tcg-tests-$TARGET

And run with:

make run-tcg-tests-$TARGET

Adding V=1 to the invocation will show the details of how to
invoke QEMU for the test which is useful for debugging tests.

TCG test dependencies

The TCG tests are deliberately very light on dependencies and are
either totally bare with minimal gcc lib support (for softmmu tests)
or just glibc (for linux-user tests). This is because getting a cross
compiler to work with additional libraries can be challenging.

Other TCG Tests

There are a number of out-of-tree test suites that are used for more
extensive testing of processor features.

KVM Unit Tests

The KVM unit tests are designed to run as a Guest OS under KVM but
there is no reason why they can’t exercise the TCG as well. It
provides a minimal OS kernel with hooks for enabling the MMU as well
as reporting test results via a special device:

https://git.kernel.org/pub/scm/virt/kvm/kvm-unit-tests.git

Linux Test Project

The LTP is focused on exercising the syscall interface of a Linux
kernel. It checks that syscalls behave as documented and strives to
exercise as many corner cases as possible. It is a useful test suite
to run to exercise QEMU’s linux-user code:

https://linux-test-project.github.io/

Decodetree Specification

A decodetree is built from instruction patterns. A pattern may
represent a single architectural instruction or a group of same, depending
on what is convenient for further processing.

Each pattern has both fixedbits and fixedmask, the combination of which
describes the condition under which the pattern is matched:

(insn & fixedmask) == fixedbits

Each pattern may have fields, which are extracted from the insn and
passed along to the translator. Examples of such are registers,
immediates, and sub-opcodes.

In support of patterns, one may declare fields, argument sets, and
formats, each of which may be re-used to simplify further definitions.

Fields

Syntax:

field_def := '%' identifier (unnamed_field)* (!function=identifier)?
unnamed_field := number ':' ('s') number

For unnamed_field, the first number is the least-significant bit position
of the field and the second number is the length of the field. If the ‘s’ is
present, the field is considered signed. If multiple unnamed_fields are
present, they are concatenated. In this way one can define disjoint fields.

If !function is specified, the concatenated result is passed through the
named function, taking and returning an integral value.

One may use !function with zero unnamed_fields. This case is called
a parameter, and the named function is only passed the DisasContext
and returns an integral value extracted from there.

A field with no unnamed_fields and no !function is in error.

FIXME: the fields of the structure into which this result will be stored
is restricted to int. Which means that we cannot expand 64-bit items.

Field examples:

	Input

	Generated code

	%disp 0:s16

	sextract(i, 0, 16)

	%imm9 16:6 10:3

	extract(i, 16, 6) << 3 | extract(i, 10, 3)

	%disp12 0:s1 1:1 2:10

	
	sextract(i, 0, 1) << 11 |

	extract(i, 1, 1) << 10 |
extract(i, 2, 10)

	
	%shimm8 5:s8 13:1

	!function=expand_shimm8

	
	expand_shimm8(sextract(i, 5, 8) << 1 |

	extract(i, 13, 1))

Argument Sets

Syntax:

args_def := '&' identifier (args_elt)+ (!extern)?
args_elt := identifier

Each args_elt defines an argument within the argument set.
Each argument set will be rendered as a C structure “arg_$name”
with each of the fields being one of the member arguments.

If !extern is specified, the backing structure is assumed
to have been already declared, typically via a second decoder.

Argument sets are useful when one wants to define helper functions
for the translator functions that can perform operations on a common
set of arguments. This can ensure, for instance, that the AND
pattern and the OR pattern put their operands into the same named
structure, so that a common gen_logic_insn may be able to handle
the operations common between the two.

Argument set examples:

®3 ra rb rc
&loadstore reg base offset

Formats

Syntax:

fmt_def := '@' identifier (fmt_elt)+
fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
fixedbit_elt := [01.-]+
field_elt := identifier ':' 's'? number
field_ref := '%' identifier | identifier '=' '%' identifier
args_ref := '&' identifier

Defining a format is a handy way to avoid replicating groups of fields
across many instruction patterns.

A fixedbit_elt describes a contiguous sequence of bits that must
be 1, 0, or don’t care. The difference between ‘.’ and ‘-‘
is that ‘.’ means that the bit will be covered with a field or a
final 0 or 1 from the pattern, and ‘-‘ means that the bit is really
ignored by the cpu and will not be specified.

A field_elt describes a simple field only given a width; the position of
the field is implied by its position with respect to other fixedbit_elt
and field_elt.

If any fixedbit_elt or field_elt appear, then all bits must be defined.
Padding with a fixedbit_elt of all ‘.’ is an easy way to accomplish that.

A field_ref incorporates a field by reference. This is the only way to
add a complex field to a format. A field may be renamed in the process
via assignment to another identifier. This is intended to allow the
same argument set be used with disjoint named fields.

A single args_ref may specify an argument set to use for the format.
The set of fields in the format must be a subset of the arguments in
the argument set. If an argument set is not specified, one will be
inferred from the set of fields.

It is recommended, but not required, that all field_ref and args_ref
appear at the end of the line, not interleaving with fixedbit_elf or
field_elt.

Format examples:

@opr ra:5 rb:5 ... 0 rc:5
@opi ra:5 lit:8 1 rc:5

Patterns

Syntax:

pat_def := identifier (pat_elt)+
pat_elt := fixedbit_elt | field_elt | field_ref | args_ref | fmt_ref | const_elt
fmt_ref := '@' identifier
const_elt := identifier '=' number

The fixedbit_elt and field_elt specifiers are unchanged from formats.
A pattern that does not specify a named format will have one inferred
from a referenced argument set (if present) and the set of fields.

A const_elt allows a argument to be set to a constant value. This may
come in handy when fields overlap between patterns and one has to
include the values in the fixedbit_elt instead.

The decoder will call a translator function for each pattern matched.

Pattern examples:

addl_r 010000 0000000 @opr
addl_i 010000 0000000 @opi

which will, in part, invoke:

trans_addl_r(ctx, &arg_opr, insn)

and:

trans_addl_i(ctx, &arg_opi, insn)

Pattern Groups

Syntax:

group := '{' (pat_def | group)+ '}'

A group begins with a lone open-brace, with all subsequent lines
indented two spaces, and ending with a lone close-brace. Groups
may be nested, increasing the required indentation of the lines
within the nested group to two spaces per nesting level.

Unlike ungrouped patterns, grouped patterns are allowed to overlap.
Conflicts are resolved by selecting the patterns in order. If all
of the fixedbits for a pattern match, its translate function will
be called. If the translate function returns false, then subsequent
patterns within the group will be matched.

The following example from PA-RISC shows specialization of the or
instruction:

{
 {
 nop 000010 ----- ----- 0000 001001 0 00000
 copy 000010 00000 r1:5 0000 001001 0 rt:5
 }
 or 000010 rt2:5 r1:5 cf:4 001001 0 rt:5
}

When the cf field is zero, the instruction has no side effects,
and may be specialized. When the rt field is zero, the output
is discarded and so the instruction has no effect. When the rt2
field is zero, the operation is reg[rt] | 0 and so encodes
the canonical register copy operation.

The output from the generator might look like:

switch (insn & 0xfc000fe0) {
case 0x08000240:
 /* 000010..0010 010..... */
 if ((insn & 0x0000f000) == 0x00000000) {
 /* 000010.. 00000010 010..... */
 if ((insn & 0x0000001f) == 0x00000000) {
 /* 000010.. 00000010 01000000 */
 extract_decode_Fmt_0(&u.f_decode0, insn);
 if (trans_nop(ctx, &u.f_decode0)) return true;
 }
 if ((insn & 0x03e00000) == 0x00000000) {
 /* 00001000 000..... 00000010 010..... */
 extract_decode_Fmt_1(&u.f_decode1, insn);
 if (trans_copy(ctx, &u.f_decode1)) return true;
 }
 }
 extract_decode_Fmt_2(&u.f_decode2, insn);
 if (trans_or(ctx, &u.f_decode2)) return true;
 return false;
}

Secure Coding Practices

This document covers topics that both developers and security researchers must
be aware of so that they can develop safe code and audit existing code
properly.

Reporting Security Bugs

For details on how to report security bugs or ask questions about potential
security bugs, see the Security Process wiki page [https://wiki.qemu.org/SecurityProcess].

General Secure C Coding Practices

Most CVEs (security bugs) reported against QEMU are not specific to
virtualization or emulation. They are simply C programming bugs. Therefore
it’s critical to be aware of common classes of security bugs.

There is a wide selection of resources available covering secure C coding. For
example, the CERT C Coding Standard [https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard]
covers the most important classes of security bugs.

Instead of describing them in detail here, only the names of the most important
classes of security bugs are mentioned:

	Buffer overflows

	Use-after-free and double-free

	Integer overflows

	Format string vulnerabilities

Some of these classes of bugs can be detected by analyzers. Static analysis is
performed regularly by Coverity and the most obvious of these bugs are even
reported by compilers. Dynamic analysis is possible with valgrind, tsan, and
asan.

Input Validation

Inputs from the guest or external sources (e.g. network, files) cannot be
trusted and may be invalid. Inputs must be checked before using them in a way
that could crash the program, expose host memory to the guest, or otherwise be
exploitable by an attacker.

The most sensitive attack surface is device emulation. All hardware register
accesses and data read from guest memory must be validated. A typical example
is a device that contains multiple units that are selectable by the guest via
an index register:

typedef struct {
 ProcessingUnit unit[2];
 ...
} MyDeviceState;

static void mydev_writel(void *opaque, uint32_t addr, uint32_t val)
{
 MyDeviceState *mydev = opaque;
 ProcessingUnit *unit;

 switch (addr) {
 case MYDEV_SELECT_UNIT:
 unit = &mydev->unit[val]; <-- this input wasn't validated!
 ...
 }
}

If val is not in range [0, 1] then an out-of-bounds memory access will take
place when unit is dereferenced. The code must check that val is 0 or
1 and handle the case where it is invalid.

Unexpected Device Accesses

The guest may access device registers in unusual orders or at unexpected
moments. Device emulation code must not assume that the guest follows the
typical “theory of operation” presented in driver writer manuals. The guest
may make nonsense accesses to device registers such as starting operations
before the device has been fully initialized.

A related issue is that device emulation code must be prepared for unexpected
device register accesses while asynchronous operations are in progress. A
well-behaved guest might wait for a completion interrupt before accessing
certain device registers. Device emulation code must handle the case where the
guest overwrites registers or submits further requests before an ongoing
request completes. Unexpected accesses must not cause memory corruption or
leaks in QEMU.

Invalid device register accesses can be reported with
qemu_log_mask(LOG_GUEST_ERROR, ...). The -d guest_errors command-line
option enables these log messages.

Live Migration

Device state can be saved to disk image files and shared with other users.
Live migration code must validate inputs when loading device state so an
attacker cannot gain control by crafting invalid device states. Device state
is therefore considered untrusted even though it is typically generated by QEMU
itself.

Guest Memory Access Races

Guests with multiple vCPUs may modify guest RAM while device emulation code is
running. Device emulation code must copy in descriptors and other guest RAM
structures and only process the local copy. This prevents
time-of-check-to-time-of-use (TOCTOU) race conditions that could cause QEMU to
crash when a vCPU thread modifies guest RAM while device emulation is
processing it.

Translator Internals

QEMU is a dynamic translator. When it first encounters a piece of code,
it converts it to the host instruction set. Usually dynamic translators
are very complicated and highly CPU dependent. QEMU uses some tricks
which make it relatively easily portable and simple while achieving good
performances.

QEMU’s dynamic translation backend is called TCG, for “Tiny Code
Generator”. For more information, please take a look at tcg/README.

Some notable features of QEMU’s dynamic translator are:

CPU state optimisations

The target CPUs have many internal states which change the way it
evaluates instructions. In order to achieve a good speed, the
translation phase considers that some state information of the virtual
CPU cannot change in it. The state is recorded in the Translation
Block (TB). If the state changes (e.g. privilege level), a new TB will
be generated and the previous TB won’t be used anymore until the state
matches the state recorded in the previous TB. The same idea can be applied
to other aspects of the CPU state. For example, on x86, if the SS,
DS and ES segments have a zero base, then the translator does not even
generate an addition for the segment base.

Direct block chaining

After each translated basic block is executed, QEMU uses the simulated
Program Counter (PC) and other cpu state information (such as the CS
segment base value) to find the next basic block.

In order to accelerate the most common cases where the new simulated PC
is known, QEMU can patch a basic block so that it jumps directly to the
next one.

The most portable code uses an indirect jump. An indirect jump makes
it easier to make the jump target modification atomic. On some host
architectures (such as x86 or PowerPC), the JUMP opcode is
directly patched so that the block chaining has no overhead.

Self-modifying code and translated code invalidation

Self-modifying code is a special challenge in x86 emulation because no
instruction cache invalidation is signaled by the application when code
is modified.

User-mode emulation marks a host page as write-protected (if it is
not already read-only) every time translated code is generated for a
basic block. Then, if a write access is done to the page, Linux raises
a SEGV signal. QEMU then invalidates all the translated code in the page
and enables write accesses to the page. For system emulation, write
protection is achieved through the software MMU.

Correct translated code invalidation is done efficiently by maintaining
a linked list of every translated block contained in a given page. Other
linked lists are also maintained to undo direct block chaining.

On RISC targets, correctly written software uses memory barriers and
cache flushes, so some of the protection above would not be
necessary. However, QEMU still requires that the generated code always
matches the target instructions in memory in order to handle
exceptions correctly.

Exception support

longjmp() is used when an exception such as division by zero is
encountered.

The host SIGSEGV and SIGBUS signal handlers are used to get invalid
memory accesses. QEMU keeps a map from host program counter to
target program counter, and looks up where the exception happened
based on the host program counter at the exception point.

On some targets, some bits of the virtual CPU’s state are not flushed to the
memory until the end of the translation block. This is done for internal
emulation state that is rarely accessed directly by the program and/or changes
very often throughout the execution of a translation block—this includes
condition codes on x86, delay slots on SPARC, conditional execution on
ARM, and so on. This state is stored for each target instruction, and
looked up on exceptions.

MMU emulation

For system emulation QEMU uses a software MMU. In that mode, the MMU
virtual to physical address translation is done at every memory
access.

QEMU uses an address translation cache (TLB) to speed up the translation.
In order to avoid flushing the translated code each time the MMU
mappings change, all caches in QEMU are physically indexed. This
means that each basic block is indexed with its physical address.

In order to avoid invalidating the basic block chain when MMU mappings
change, chaining is only performed when the destination of the jump
shares a page with the basic block that is performing the jump.

The MMU can also distinguish RAM and ROM memory areas from MMIO memory
areas. Access is faster for RAM and ROM because the translation cache also
hosts the offset between guest address and host memory. Accessing MMIO
memory areas instead calls out to C code for device emulation.
Finally, the MMU helps tracking dirty pages and pages pointed to by
translation blocks.

QEMU TCG Plugins

QEMU TCG plugins provide a way for users to run experiments taking
advantage of the total system control emulation can have over a guest.
It provides a mechanism for plugins to subscribe to events during
translation and execution and optionally callback into the plugin
during these events. TCG plugins are unable to change the system state
only monitor it passively. However they can do this down to an
individual instruction granularity including potentially subscribing
to all load and store operations.

API Stability

This is a new feature for QEMU and it does allow people to develop
out-of-tree plugins that can be dynamically linked into a running QEMU
process. However the project reserves the right to change or break the
API should it need to do so. The best way to avoid this is to submit
your plugin upstream so they can be updated if/when the API changes.

API versioning

All plugins need to declare a symbol which exports the plugin API
version they were built against. This can be done simply by:

QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;

The core code will refuse to load a plugin that doesn’t export a
qemu_plugin_version symbol or if plugin version is outside of QEMU’s
supported range of API versions.

Additionally the qemu_info_t structure which is passed to the
qemu_plugin_install method of a plugin will detail the minimum and
current API versions supported by QEMU. The API version will be
incremented if new APIs are added. The minimum API version will be
incremented if existing APIs are changed or removed.

Exposure of QEMU internals

The plugin architecture actively avoids leaking implementation details
about how QEMU’s translation works to the plugins. While there are
conceptions such as translation time and translation blocks the
details are opaque to plugins. The plugin is able to query select
details of instructions and system configuration only through the
exported qemu_plugin functions.

Query Handle Lifetime

Each callback provides an opaque anonymous information handle which
can usually be further queried to find out information about a
translation, instruction or operation. The handles themselves are only
valid during the lifetime of the callback so it is important that any
information that is needed is extracted during the callback and saved
by the plugin.

Usage

The QEMU binary needs to be compiled for plugin support:

configure --enable-plugins

Once built a program can be run with multiple plugins loaded each with
their own arguments:

$QEMU $OTHER_QEMU_ARGS \
 -plugin tests/plugin/libhowvec.so,arg=inline,arg=hint \
 -plugin tests/plugin/libhotblocks.so

Arguments are plugin specific and can be used to modify their
behaviour. In this case the howvec plugin is being asked to use inline
ops to count and break down the hint instructions by type.

Plugin Life cycle

First the plugin is loaded and the public qemu_plugin_install function
is called. The plugin will then register callbacks for various plugin
events. Generally plugins will register a handler for the atexit
if they want to dump a summary of collected information once the
program/system has finished running.

When a registered event occurs the plugin callback is invoked. The
callbacks may provide additional information. In the case of a
translation event the plugin has an option to enumerate the
instructions in a block of instructions and optionally register
callbacks to some or all instructions when they are executed.

There is also a facility to add an inline event where code to
increment a counter can be directly inlined with the translation.
Currently only a simple increment is supported. This is not atomic so
can miss counts. If you want absolute precision you should use a
callback which can then ensure atomicity itself.

Finally when QEMU exits all the registered atexit callbacks are
invoked.

Internals

Locking

We have to ensure we cannot deadlock, particularly under MTTCG. For
this we acquire a lock when called from plugin code. We also keep the
list of callbacks under RCU so that we do not have to hold the lock
when calling the callbacks. This is also for performance, since some
callbacks (e.g. memory access callbacks) might be called very
frequently.

	A consequence of this is that we keep our own list of CPUs, so that
we do not have to worry about locking order wrt cpu_list_lock.

	Use a recursive lock, since we can get registration calls from
callbacks.

As a result registering/unregistering callbacks is “slow”, since it
takes a lock. But this is very infrequent; we want performance when
calling (or not calling) callbacks, not when registering them. Using
RCU is great for this.

We support the uninstallation of a plugin at any time (e.g. from
plugin callbacks). This allows plugins to remove themselves if they no
longer want to instrument the code. This operation is asynchronous
which means callbacks may still occur after the uninstall operation is
requested. The plugin isn’t completely uninstalled until the safe work
has executed while all vCPUs are quiescent.

Bitwise operations

The header qemu/bitops.h provides utility functions for
performing bitwise operations.

	
void set_bit(long nr, unsigned long * addr)

	Set a bit in memory

Parameters

	long nr

	the bit to set

	unsigned long * addr

	the address to start counting from

	
void set_bit_atomic(long nr, unsigned long * addr)

	Set a bit in memory atomically

Parameters

	long nr

	the bit to set

	unsigned long * addr

	the address to start counting from

	
void clear_bit(long nr, unsigned long * addr)

	Clears a bit in memory

Parameters

	long nr

	Bit to clear

	unsigned long * addr

	Address to start counting from

	
void change_bit(long nr, unsigned long * addr)

	Toggle a bit in memory

Parameters

	long nr

	Bit to change

	unsigned long * addr

	Address to start counting from

	
int test_and_set_bit(long nr, unsigned long * addr)

	Set a bit and return its old value

Parameters

	long nr

	Bit to set

	unsigned long * addr

	Address to count from

	
int test_and_clear_bit(long nr, unsigned long * addr)

	Clear a bit and return its old value

Parameters

	long nr

	Bit to clear

	unsigned long * addr

	Address to count from

	
int test_and_change_bit(long nr, unsigned long * addr)

	Change a bit and return its old value

Parameters

	long nr

	Bit to change

	unsigned long * addr

	Address to count from

	
int test_bit(long nr, const unsigned long * addr)

	Determine whether a bit is set

Parameters

	long nr

	bit number to test

	const unsigned long * addr

	Address to start counting from

	
unsigned long find_last_bit(const unsigned long * addr, unsigned long size)

	find the last set bit in a memory region

Parameters

	const unsigned long * addr

	The address to start the search at

	unsigned long size

	The maximum size to search

Description

Returns the bit number of the first set bit, or size.

	
unsigned long find_next_bit(const unsigned long * addr, unsigned long size, unsigned long offset)

	find the next set bit in a memory region

Parameters

	const unsigned long * addr

	The address to base the search on

	unsigned long size

	The bitmap size in bits

	unsigned long offset

	The bitnumber to start searching at

	
unsigned long find_next_zero_bit(const unsigned long * addr, unsigned long size, unsigned long offset)

	find the next cleared bit in a memory region

Parameters

	const unsigned long * addr

	The address to base the search on

	unsigned long size

	The bitmap size in bits

	unsigned long offset

	The bitnumber to start searching at

	
unsigned long find_first_bit(const unsigned long * addr, unsigned long size)

	find the first set bit in a memory region

Parameters

	const unsigned long * addr

	The address to start the search at

	unsigned long size

	The maximum size to search

Description

Returns the bit number of the first set bit.

	
unsigned long find_first_zero_bit(const unsigned long * addr, unsigned long size)

	find the first cleared bit in a memory region

Parameters

	const unsigned long * addr

	The address to start the search at

	unsigned long size

	The maximum size to search

Description

Returns the bit number of the first cleared bit.

	
uint8_t rol8(uint8_t word, unsigned int shift)

	rotate an 8-bit value left

Parameters

	uint8_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint8_t ror8(uint8_t word, unsigned int shift)

	rotate an 8-bit value right

Parameters

	uint8_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint16_t rol16(uint16_t word, unsigned int shift)

	rotate a 16-bit value left

Parameters

	uint16_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint16_t ror16(uint16_t word, unsigned int shift)

	rotate a 16-bit value right

Parameters

	uint16_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint32_t rol32(uint32_t word, unsigned int shift)

	rotate a 32-bit value left

Parameters

	uint32_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint32_t ror32(uint32_t word, unsigned int shift)

	rotate a 32-bit value right

Parameters

	uint32_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint64_t rol64(uint64_t word, unsigned int shift)

	rotate a 64-bit value left

Parameters

	uint64_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint64_t ror64(uint64_t word, unsigned int shift)

	rotate a 64-bit value right

Parameters

	uint64_t word

	value to rotate

	unsigned int shift

	bits to roll

	
uint32_t extract32(uint32_t value, int start, int length)

	

Parameters

	uint32_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 32 bit input value the bit field specified by the
start and length parameters, and return it. The bit field must
lie entirely within the 32 bit word. It is valid to request that
all 32 bits are returned (ie length 32 and start 0).

Return

the value of the bit field extracted from the input value.

	
uint8_t extract8(uint8_t value, int start, int length)

	

Parameters

	uint8_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 8 bit input value the bit field specified by the
start and length parameters, and return it. The bit field must
lie entirely within the 8 bit word. It is valid to request that
all 8 bits are returned (ie length 8 and start 0).

Return

the value of the bit field extracted from the input value.

	
uint16_t extract16(uint16_t value, int start, int length)

	

Parameters

	uint16_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 16 bit input value the bit field specified by the
start and length parameters, and return it. The bit field must
lie entirely within the 16 bit word. It is valid to request that
all 16 bits are returned (ie length 16 and start 0).

Return

the value of the bit field extracted from the input value.

	
uint64_t extract64(uint64_t value, int start, int length)

	

Parameters

	uint64_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 64 bit input value the bit field specified by the
start and length parameters, and return it. The bit field must
lie entirely within the 64 bit word. It is valid to request that
all 64 bits are returned (ie length 64 and start 0).

Return

the value of the bit field extracted from the input value.

	
int32_t sextract32(uint32_t value, int start, int length)

	

Parameters

	uint32_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 32 bit input value the bit field specified by the
start and length parameters, and return it, sign extended to
an int32_t (ie with the most significant bit of the field propagated
to all the upper bits of the return value). The bit field must lie
entirely within the 32 bit word. It is valid to request that
all 32 bits are returned (ie length 32 and start 0).

Return

the sign extended value of the bit field extracted from the
input value.

	
int64_t sextract64(uint64_t value, int start, int length)

	

Parameters

	uint64_t value

	the value to extract the bit field from

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

Description

Extract from the 64 bit input value the bit field specified by the
start and length parameters, and return it, sign extended to
an int64_t (ie with the most significant bit of the field propagated
to all the upper bits of the return value). The bit field must lie
entirely within the 64 bit word. It is valid to request that
all 64 bits are returned (ie length 64 and start 0).

Return

the sign extended value of the bit field extracted from the
input value.

	
uint32_t deposit32(uint32_t value, int start, int length, uint32_t fieldval)

	

Parameters

	uint32_t value

	initial value to insert bit field into

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

	uint32_t fieldval

	the value to insert into the bit field

Description

Deposit fieldval into the 32 bit value at the bit field specified
by the start and length parameters, and return the modified
value. Bits of value outside the bit field are not modified.
Bits of fieldval above the least significant length bits are
ignored. The bit field must lie entirely within the 32 bit word.
It is valid to request that all 32 bits are modified (ie length
32 and start 0).

Return

the modified value.

	
uint64_t deposit64(uint64_t value, int start, int length, uint64_t fieldval)

	

Parameters

	uint64_t value

	initial value to insert bit field into

	int start

	the lowest bit in the bit field (numbered from 0)

	int length

	the length of the bit field

	uint64_t fieldval

	the value to insert into the bit field

Description

Deposit fieldval into the 64 bit value at the bit field specified
by the start and length parameters, and return the modified
value. Bits of value outside the bit field are not modified.
Bits of fieldval above the least significant length bits are
ignored. The bit field must lie entirely within the 64 bit word.
It is valid to request that all 64 bits are modified (ie length
64 and start 0).

Return

the modified value.

	
uint32_t half_shuffle32(uint32_t x)

	

Parameters

	uint32_t x

	32-bit value (of which only the bottom 16 bits are of interest)

Description

Given an input value:

xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP

return the value where the bottom 16 bits are spread out into
the odd bits in the word, and the even bits are zeroed:

0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P

Any bits set in the top half of the input are ignored.

Return

the shuffled bits.

	
uint64_t half_shuffle64(uint64_t x)

	

Parameters

	uint64_t x

	64-bit value (of which only the bottom 32 bits are of interest)

Description

Given an input value:

xxxx xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef

return the value where the bottom 32 bits are spread out into
the odd bits in the word, and the even bits are zeroed:

0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f

Any bits set in the top half of the input are ignored.

Return

the shuffled bits.

	
uint32_t half_unshuffle32(uint32_t x)

	

Parameters

	uint32_t x

	32-bit value (of which only the odd bits are of interest)

Description

Given an input value:

xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP

return the value where all the odd bits are compressed down
into the low half of the word, and the high half is zeroed:

0000 0000 0000 0000 ABCD EFGH IJKL MNOP

Any even bits set in the input are ignored.

Return

the unshuffled bits.

	
uint64_t half_unshuffle64(uint64_t x)

	

Parameters

	uint64_t x

	64-bit value (of which only the odd bits are of interest)

Description

Given an input value:

xAxB xCxD xExF xGxH xIxJ xKxL xMxN xUxV xWxX xYxZ xaxb xcxd xexf

return the value where all the odd bits are compressed down
into the low half of the word, and the high half is zeroed:

0000 0000 0000 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef

Any even bits set in the input are ignored.

Return

the unshuffled bits.

Reset in QEMU: the Resettable interface

The reset of qemu objects is handled using the resettable interface declared
in include/hw/resettable.h.

This interface allows objects to be grouped (on a tree basis); so that the
whole group can be reset consistently. Each individual member object does not
have to care about others; in particular, problems of order (which object is
reset first) are addressed.

As of now DeviceClass and BusClass implement this interface.

Triggering reset

This section documents the APIs which “users” of a resettable object should use
to control it. All resettable control functions must be called while holding
the iothread lock.

You can apply a reset to an object using resettable_assert_reset(). You need
to call resettable_release_reset() to release the object from reset. To
instantly reset an object, without keeping it in reset state, just call
resettable_reset(). These functions take two parameters: a pointer to the
object to reset and a reset type.

Several types of reset will be supported. For now only cold reset is defined;
others may be added later. The Resettable interface handles reset types with an
enum:

	RESET_TYPE_COLD

	Cold reset is supported by every resettable object. In QEMU, it means we reset
to the initial state corresponding to the start of QEMU; this might differ
from what is a real hardware cold reset. It differs from other resets (like
warm or bus resets) which may keep certain parts untouched.

Calling resettable_reset() is equivalent to calling
resettable_assert_reset() then resettable_release_reset(). It is
possible to interleave multiple calls to these three functions. There may
be several reset sources/controllers of a given object. The interface handles
everything and the different reset controllers do not need to know anything
about each others. The object will leave reset state only when each other
controllers end their reset operation. This point is handled internally by
maintaining a count of in-progress resets; it is crucial to call
resettable_release_reset() one time and only one time per
resettable_assert_reset() call.

For now migration of a device or bus in reset is not supported. Care must be
taken not to delay resettable_release_reset() after its
resettable_assert_reset() counterpart.

Note that, since resettable is an interface, the API takes a simple Object as
parameter. Still, it is a programming error to call a resettable function on a
non-resettable object and it will trigger a run time assert error. Since most
calls to resettable interface are done through base class functions, such an
error is not likely to happen.

For Devices and Buses, the following helper functions exist:

	device_cold_reset()

	bus_cold_reset()

These are simple wrappers around resettable_reset() function; they only cast the
Device or Bus into an Object and pass the cold reset type. When possible
prefer to use these functions instead of resettable_reset().

Device and bus functions co-exist because there can be semantic differences
between resetting a bus and resetting the controller bridge which owns it.
For example, consider a SCSI controller. Resetting the controller puts all
its registers back to what reset state was as well as reset everything on the
SCSI bus, whereas resetting just the SCSI bus only resets everything that’s on
it but not the controller.

Multi-phase mechanism

This section documents the internals of the resettable interface.

The resettable interface uses a multi-phase system to relieve objects and
machines from reset ordering problems. To address this, the reset operation
of an object is split into three well defined phases.

When resetting several objects (for example the whole machine at simulation
startup), all first phases of all objects are executed, then all second phases
and then all third phases.

The three phases are:

	The enter phase is executed when the object enters reset. It resets only
local state of the object; it must not do anything that has a side-effect
on other objects, such as raising or lowering a qemu_irq line or reading or
writing guest memory.

	The hold phase is executed for entry into reset, once every object in the
group which is being reset has had its enter phase executed. At this point
devices can do actions that affect other objects.

	The exit phase is executed when the object leaves the reset state.
Actions affecting other objects are permitted.

As said in previous section, the interface maintains a count of reset. This
count is used to ensure phases are executed only when required. enter and
hold phases are executed only when asserting reset for the first time
(if an object is already in reset state when calling
resettable_assert_reset() or resettable_reset(), they are not
executed).
The exit phase is executed only when the last reset operation ends. Therefore
the object does not need to care how many of reset controllers it has and how
many of them have started a reset.

Handling reset in a resettable object

This section documents the APIs that an implementation of a resettable object
must provide and what functions it has access to. It is intended for people
who want to implement or convert a class which has the resettable interface;
for example when specializing an existing device or bus.

Methods to implement

Three methods should be defined or left empty. Each method corresponds to a
phase of the reset; they are name phases.enter(), phases.hold() and
phases.exit(). They all take the object as parameter. The enter method
also take the reset type as second parameter.

When extending an existing class, these methods may need to be extended too.
The resettable_class_set_parent_phases() class function may be used to
backup parent class methods.

Here follows an example to implement reset for a Device which sets an IO while
in reset.

static void mydev_reset_enter(Object *obj, ResetType type)
{
 MyDevClass *myclass = MYDEV_GET_CLASS(obj);
 MyDevState *mydev = MYDEV(obj);
 /* call parent class enter phase */
 if (myclass->parent_phases.enter) {
 myclass->parent_phases.enter(obj, type);
 }
 /* initialize local state only */
 mydev->var = 0;
}

static void mydev_reset_hold(Object *obj)
{
 MyDevClass *myclass = MYDEV_GET_CLASS(obj);
 MyDevState *mydev = MYDEV(obj);
 /* call parent class hold phase */
 if (myclass->parent_phases.hold) {
 myclass->parent_phases.hold(obj);
 }
 /* set an IO */
 qemu_set_irq(mydev->irq, 1);
}

static void mydev_reset_exit(Object *obj)
{
 MyDevClass *myclass = MYDEV_GET_CLASS(obj);
 MyDevState *mydev = MYDEV(obj);
 /* call parent class exit phase */
 if (myclass->parent_phases.exit) {
 myclass->parent_phases.exit(obj);
 }
 /* clear an IO */
 qemu_set_irq(mydev->irq, 0);
}

typedef struct MyDevClass {
 MyParentClass parent_class;
 /* to store eventual parent reset methods */
 ResettablePhases parent_phases;
} MyDevClass;

static void mydev_class_init(ObjectClass *class, void *data)
{
 MyDevClass *myclass = MYDEV_CLASS(class);
 ResettableClass *rc = RESETTABLE_CLASS(class);
 resettable_class_set_parent_reset_phases(rc,
 mydev_reset_enter,
 mydev_reset_hold,
 mydev_reset_exit,
 &myclass->parent_phases);
}

In the above example, we override all three phases. It is possible to override
only some of them by passing NULL instead of a function pointer to
resettable_class_set_parent_reset_phases(). For example, the following will
only override the enter phase and leave hold and exit untouched:

resettable_class_set_parent_reset_phases(rc, mydev_reset_enter,
 NULL, NULL,
 &myclass->parent_phases);

This is equivalent to providing a trivial implementation of the hold and exit
phases which does nothing but call the parent class’s implementation of the
phase.

Polling the reset state

Resettable interface provides the resettable_is_in_reset() function.
This function returns true if the object parameter is currently under reset.

An object is under reset from the beginning of the init phase to the end of
the exit phase. During all three phases, the function will return that the
object is in reset.

This function may be used if the object behavior has to be adapted
while in reset state. For example if a device has an irq input,
it will probably need to ignore it while in reset; then it can for
example check the reset state at the beginning of the irq callback.

Note that until migration of the reset state is supported, an object
should not be left in reset. So apart from being currently executing
one of the reset phases, the only cases when this function will return
true is if an external interaction (like changing an io) is made during
hold or exit phase of another object in the same reset group.

Helpers device_is_in_reset() and bus_is_in_reset() are also provided
for devices and buses and should be preferred.

Base class handling of reset

This section documents parts of the reset mechanism that you only need to know
about if you are extending it to work with a new base class other than
DeviceClass or BusClass, or maintaining the existing code in those classes. Most
people can ignore it.

Methods to implement

There are two other methods that need to exist in a class implementing the
interface: get_state() and child_foreach().

get_state() is simple. resettable is an interface and, as a consequence,
does not have any class state structure. But in order to factorize the code, we
need one. This method must return a pointer to ResettableState structure.
The structure must be allocated by the base class; preferably it should be
located inside the object instance structure.

child_foreach() is more complex. It should execute the given callback on
every reset child of the given resettable object. All children must be
resettable too. Additional parameters (a reset type and an opaque pointer) must
be passed to the callback too.

In DeviceClass and BusClass the ResettableState is located
DeviceState and BusState structure. child_foreach() is implemented
to follow the bus hierarchy; for a bus, it calls the function on every child
device; for a device, it calls the function on every bus child. When we reset
the main system bus, we reset the whole machine bus tree.

Changing a resettable parent

One thing which should be taken care of by the base class is handling reset
hierarchy changes.

The reset hierarchy is supposed to be static and built during machine creation.
But there are actually some exceptions. To cope with this, the resettable API
provides resettable_change_parent(). This function allows to set, update or
remove the parent of a resettable object after machine creation is done. As
parameters, it takes the object being moved, the old parent if any and the new
parent if any.

This function can be used at any time when not in a reset operation. During
a reset operation it must be used only in hold phase. Using it in enter or
exit phase is an error.
Also it should not be used during machine creation, although it is harmless to
do so: the function is a no-op as long as old and new parent are NULL or not
in reset.

There is currently 2 cases where this function is used:

	device hotplug; it means a new device is introduced on a live bus.

	hot bus change; it means an existing live device is added, moved or
removed in the bus hierarchy. At the moment, it occurs only in the raspi
machines for changing the sdbus used by sd card.

Booting from real channel-attached devices on s390x

s390 hardware IPL

The s390 hardware IPL process consists of the following steps.

	A READ IPL ccw is constructed in memory location 0x0.
This ccw, by definition, reads the IPL1 record which is located on the disk
at cylinder 0 track 0 record 1. Note that the chain flag is on in this ccw
so when it is complete another ccw will be fetched and executed from memory
location 0x08.

	Execute the Read IPL ccw at 0x00, thereby reading IPL1 data into 0x00.
IPL1 data is 24 bytes in length and consists of the following pieces of
information: [psw][read ccw][tic ccw]. When the machine executes the Read
IPL ccw it read the 24-bytes of IPL1 to be read into memory starting at
location 0x0. Then the ccw program at 0x08 which consists of a read
ccw and a tic ccw is automatically executed because of the chain flag from
the original READ IPL ccw. The read ccw will read the IPL2 data into memory
and the TIC (Transfer In Channel) will transfer control to the channel
program contained in the IPL2 data. The TIC channel command is the
equivalent of a branch/jump/goto instruction for channel programs.

NOTE: The ccws in IPL1 are defined by the architecture to be format 0.

	Execute IPL2.
The TIC ccw instruction at the end of the IPL1 channel program will begin
the execution of the IPL2 channel program. IPL2 is stage-2 of the boot
process and will contain a larger channel program than IPL1. The point of
IPL2 is to find and load either the operating system or a small program that
loads the operating system from disk. At the end of this step all or some of
the real operating system is loaded into memory and we are ready to hand
control over to the guest operating system. At this point the guest
operating system is entirely responsible for loading any more data it might
need to function.

NOTE: The IPL2 channel program might read data into memory
location 0x0 thereby overwriting the IPL1 psw and channel program. This is ok
as long as the data placed in location 0x0 contains a psw whose instruction
address points to the guest operating system code to execute at the end of
the IPL/boot process.

NOTE: The ccws in IPL2 are defined by the architecture to be format 0.

	Start executing the guest operating system.
The psw that was loaded into memory location 0x0 as part of the ipl process
should contain the needed flags for the operating system we have loaded. The
psw’s instruction address will point to the location in memory where we want
to start executing the operating system. This psw is loaded (via LPSW
instruction) causing control to be passed to the operating system code.

In a non-virtualized environment this process, handled entirely by the hardware,
is kicked off by the user initiating a “Load” procedure from the hardware
management console. This “Load” procedure crafts a special “Read IPL” ccw in
memory location 0x0 that reads IPL1. It then executes this ccw thereby kicking
off the reading of IPL1 data. Since the channel program from IPL1 will be
written immediately after the special “Read IPL” ccw, the IPL1 channel program
will be executed immediately (the special read ccw has the chaining bit turned
on). The TIC at the end of the IPL1 channel program will cause the IPL2 channel
program to be executed automatically. After this sequence completes the “Load”
procedure then loads the psw from 0x0.

How this all pertains to QEMU (and the kernel)

In theory we should merely have to do the following to IPL/boot a guest
operating system from a DASD device:

	Place a “Read IPL” ccw into memory location 0x0 with chaining bit on.

	Execute channel program at 0x0.

	LPSW 0x0.

However, our emulation of the machine’s channel program logic within the kernel
is missing one key feature that is required for this process to work:
non-prefetch of ccw data.

When we start a channel program we pass the channel subsystem parameters via an
ORB (Operation Request Block). One of those parameters is a prefetch bit. If the
bit is on then the vfio-ccw kernel driver is allowed to read the entire channel
program from guest memory before it starts executing it. This means that any
channel commands that read additional channel commands will not work as expected
because the newly read commands will only exist in guest memory and NOT within
the kernel’s channel subsystem memory. The kernel vfio-ccw driver currently
requires this bit to be on for all channel programs. This is a problem because
the IPL process consists of transferring control from the “Read IPL” ccw
immediately to the IPL1 channel program that was read by “Read IPL”.

Not being able to turn off prefetch will also prevent the TIC at the end of the
IPL1 channel program from transferring control to the IPL2 channel program.

Lastly, in some cases (the zipl bootloader for example) the IPL2 program also
transfers control to another channel program segment immediately after reading
it from the disk. So we need to be able to handle this case.

What QEMU does

Since we are forced to live with prefetch we cannot use the very simple IPL
procedure we defined in the preceding section. So we compensate by doing the
following.

	Place “Read IPL” ccw into memory location 0x0, but turn off chaining bit.

	Execute “Read IPL” at 0x0.

So now IPL1’s psw is at 0x0 and IPL1’s channel program is at 0x08.

	Write a custom channel program that will seek to the IPL2 record and then
execute the READ and TIC ccws from IPL1. Normally the seek is not required
because after reading the IPL1 record the disk is automatically positioned
to read the very next record which will be IPL2. But since we are not reading
both IPL1 and IPL2 as part of the same channel program we must manually set
the position.

	Grab the target address of the TIC instruction from the IPL1 channel program.
This address is where the IPL2 channel program starts.

Now IPL2 is loaded into memory somewhere, and we know the address.

	Execute the IPL2 channel program at the address obtained in step #4.

Because this channel program can be dynamic, we must use a special algorithm
that detects a READ immediately followed by a TIC and breaks the ccw chain
by turning off the chain bit in the READ ccw. When control is returned from
the kernel/hardware to the QEMU bios code we immediately issue another start
subchannel to execute the remaining TIC instruction. This causes the entire
channel program (starting from the TIC) and all needed data to be refetched
thereby stepping around the limitation that would otherwise prevent this
channel program from executing properly.

Now the operating system code is loaded somewhere in guest memory and the psw
in memory location 0x0 will point to entry code for the guest operating
system.

	LPSW 0x0

LPSW transfers control to the guest operating system and we’re done.

QEMU System Emulation Guest Hardware Specifications

Contents:

	POWER9 XIVE interrupt controller
	XIVE architecture

	Overview of the QEMU models for XIVE

	XIVE for sPAPR (pseries machines)
	CAS Negotiation

	KVM negotiation

	XIVE Device tree properties

	IRQ number space

	Monitoring XIVE

	QEMU and ACPI BIOS Generic Event Device interface
	GED IO interface (4 byte access)

	QEMU TPM Device
	Guest-side hardware interface

	fw_cfg interface

	ACPI interface

	TPM backend devices

	Migration with the TPM emulator

POWER9 XIVE interrupt controller

The POWER9 processor comes with a new interrupt controller
architecture, called XIVE as “eXternal Interrupt Virtualization
Engine”.

Compared to the previous architecture, the main characteristics of
XIVE are to support a larger number of interrupt sources and to
deliver interrupts directly to virtual processors without hypervisor
assistance. This removes the context switches required for the
delivery process.

XIVE architecture

The XIVE IC is composed of three sub-engines, each taking care of a
processing layer of external interrupts:

	Interrupt Virtualization Source Engine (IVSE), or Source Controller
(SC). These are found in PCI PHBs, in the Processor Service
Interface (PSI) host bridge Controller, but also inside the main
controller for the core IPIs and other sub-chips (NX, CAP, NPU) of
the chip/processor. They are configured to feed the IVRE with
events.

	Interrupt Virtualization Routing Engine (IVRE) or Virtualization
Controller (VC). It handles event coalescing and perform interrupt
routing by matching an event source number with an Event
Notification Descriptor (END).

	Interrupt Virtualization Presentation Engine (IVPE) or Presentation
Controller (PC). It maintains the interrupt context state of each
thread and handles the delivery of the external interrupt to the
thread.

 XIVE Interrupt Controller
 +------------------------------------+ IPIs
 | +---------+ +---------+ +--------+ | +-------+
 | |IVRE | |Common Q | |IVPE |----> | CORES | |
 | | esb | | | | |----> | |
 | | eas | | Bridge | | tctx |----> | |
 | |SC end | | | | nvt | | | |
+------+ | +---------+ +----+----+ +--------+ | +-+-+-+-+
RAM	+------------------	-----------------+		
	+--------------------v------------------------v-v-v--+ other			
<--+ Power Bus +--> chips				
esb	+---------+-----------------------+------------------+			
eas				
end	+--	------+		
nvt	+----+----+	+----+----+		
+------+ |IVSE | | |IVSE |
 | | | | |
 | PQ-bits | | | PQ-bits |
 | local |-+ | in VC |
 +---------+ +---------+
 PCIe NX,NPU,CAPI

PQ-bits: 2 bits source state machine (P:pending Q:queued)
esb: Event State Buffer (Array of PQ bits in an IVSE)
eas: Event Assignment Structure
end: Event Notification Descriptor
nvt: Notification Virtual Target
tctx: Thread interrupt Context registers

XIVE internal tables

Each of the sub-engines uses a set of tables to redirect interrupts
from event sources to CPU threads.

 +-------+
User or O/S | EQ |
 or +------>|entries|
Hypervisor | | .. |
 Memory | +-------+
 | ^
 | |
 +---+
 | |
Hypervisor +------+ +---+--+ +---+--+ +------+
 Memory | ESB | | EAT | | ENDT | | NVTT |
 (skiboot) +----+-+ +----+-+ +----+-+ +------+
 ^ | ^ | ^ | ^
 | | | | | | |
 +---+
 | | | | | | |
 | | | | | | |
 +----|--|--------|--|--------|--|-+ +-|-----+ +------+
 | | | | | | | | | | tctx| |Thread|
 IPI or ---+ + v + v + v |---| + .. |-----> |
HW events | | | | | |
 | IVRE | | IVPE | +------+
 +---------------------------------+ +-------+

The IVSE have a 2-bits state machine, P for pending and Q for queued,
for each source that allows events to be triggered. They are stored in
an Event State Buffer (ESB) array and can be controlled by MMIOs.

If the event is let through, the IVRE looks up in the Event Assignment
Structure (EAS) table for an Event Notification Descriptor (END)
configured for the source. Each Event Notification Descriptor defines
a notification path to a CPU and an in-memory Event Queue, in which
will be enqueued an EQ data for the O/S to pull.

The IVPE determines if a Notification Virtual Target (NVT) can handle
the event by scanning the thread contexts of the VCPUs dispatched on
the processor HW threads. It maintains the interrupt context state of
each thread in a NVT table.

XIVE thread interrupt context

The XIVE presenter can generate four different exceptions to its
HW threads:

	hypervisor exception

	O/S exception

	Event-Based Branch (user level)

	msgsnd (doorbell)

Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt
acknowledgment among other things. The most important ones being :

	Interrupt Priority Register (PIPR)

	Interrupt Pending Buffer (IPB)

	Current Processor Priority (CPPR)

	Notification Source Register (NSR)

TIMA

The Thread Interrupt Management registers are accessible through a
specific MMIO region, called the Thread Interrupt Management Area
(TIMA), four aligned pages, each exposing a different view of the
registers. First page (page address ending in 0b00) gives access
to the entire context and is reserved for the ring 0 view for the
physical thread context. The second (page address ending in 0b01)
is for the hypervisor, ring 1 view. The third (page address ending in
0b10) is for the operating system, ring 2 view. The fourth (page
address ending in 0b11) is for user level, ring 3 view.

Interrupt flow from an O/S perspective

After an event data has been enqueued in the O/S Event Queue, the IVPE
raises the bit corresponding to the priority of the pending interrupt
in the register IBP (Interrupt Pending Buffer) to indicate that an
event is pending in one of the 8 priority queues. The Pending
Interrupt Priority Register (PIPR) is also updated using the IPB. This
register represent the priority of the most favored pending
notification.

The PIPR is then compared to the Current Processor Priority
Register (CPPR). If it is more favored (numerically less than), the
CPU interrupt line is raised and the EO bit of the Notification Source
Register (NSR) is updated to notify the presence of an exception for
the O/S. The O/S acknowledges the interrupt with a special load in the
Thread Interrupt Management Area.

The O/S handles the interrupt and when done, performs an EOI using a
MMIO operation on the ESB management page of the associate source.

Overview of the QEMU models for XIVE

The XiveSource models the IVSE in general, internal and external. It
handles the source ESBs and the MMIO interface to control them.

The XiveNotifier is a small helper interface interconnecting the
XiveSource to the XiveRouter.

The XiveRouter is an abstract model acting as a combined IVRE and
IVPE. It routes event notifications using the EAS and END tables to
the IVPE sub-engine which does a CAM scan to find a CPU to deliver the
exception. Storage should be provided by the inheriting classes.

XiveEnDSource is a special source object. It exposes the END ESB MMIOs
of the Event Queues which are used for coalescing event notifications
and for escalation. Not used on the field, only to sync the EQ cache
in OPAL.

Finally, the XiveTCTX contains the interrupt state context of a thread,
four sets of registers, one for each exception that can be delivered
to a CPU. These contexts are scanned by the IVPE to find a matching VP
when a notification is triggered. It also models the Thread Interrupt
Management Area (TIMA), which exposes the thread context registers to
the CPU for interrupt management.

XIVE for sPAPR (pseries machines)

The POWER9 processor comes with a new interrupt controller
architecture, called XIVE as “eXternal Interrupt Virtualization
Engine”. It supports a larger number of interrupt sources and offers
virtualization features which enables the HW to deliver interrupts
directly to virtual processors without hypervisor assistance.

A QEMU pseries machine (which is PAPR compliant) using POWER9
processors can run under two interrupt modes:

	Legacy Compatibility Mode

the hypervisor provides identical interfaces and similar
functionality to PAPR+ Version 2.7. This is the default mode

It is also referred as XICS in QEMU.

	XIVE native exploitation mode

the hypervisor provides new interfaces to manage the XIVE control
structures, and provides direct control for interrupt management
through MMIO pages.

Which interrupt modes can be used by the machine is negotiated with
the guest O/S during the Client Architecture Support negotiation
sequence. The two modes are mutually exclusive.

Both interrupt mode share the same IRQ number space. See below for the
layout.

CAS Negotiation

QEMU advertises the supported interrupt modes in the device tree
property ibm,arch-vec-5-platform-support in byte 23 and the OS
Selection for XIVE is indicated in the ibm,architecture-vec-5
property byte 23.

The interrupt modes supported by the machine depend on the CPU type
(POWER9 is required for XIVE) but also on the machine property
ic-mode which can be set on the command line. It can take the
following values: xics, xive, and dual which is the
default mode. dual means that both modes XICS and XIVE are
supported and if the guest OS supports XIVE, this mode will be
selected.

The choosen interrupt mode is activated after a reconfiguration done
in a machine reset.

KVM negotiation

When the guest starts under KVM, the capabilities of the host kernel
and QEMU are also negotiated. Depending on the version of the host
kernel, KVM will advertise the XIVE capability to QEMU or not.

Nevertheless, the available interrupt modes in the machine should not
depend on the XIVE KVM capability of the host. On older kernels
without XIVE KVM support, QEMU will use the emulated XIVE device as a
fallback and on newer kernels (>=5.2), the KVM XIVE device.

As a final refinement, the user can also switch the use of the KVM
device with the machine option kernel_irqchip.

XIVE support in KVM

For guest OSes supporting XIVE, the resulting interrupt modes on host
kernels with XIVE KVM support are the following:

	ic-mode

	kernel_irqchip

	/

	allowed
(default)

	off

	on

	dual (default)

	XIVE KVM

	XIVE emul.

	XIVE KVM

	xive

	XIVE KVM

	XIVE emul.

	XIVE KVM

	xics

	XICS KVM

	XICS emul.

	XICS KVM

For legacy guest OSes without XIVE support, the resulting interrupt
modes are the following:

	ic-mode

	kernel_irqchip

	/

	allowed
(default)

	off

	on

	dual (default)

	XICS KVM

	XICS emul.

	XICS KVM

	xive

	QEMU error(3)

	QEMU error(3)

	QEMU error(3)

	xics

	XICS KVM

	XICS emul.

	XICS KVM

	QEMU fails at CAS with Guest requested unavailable interrupt
mode (XICS), either don't set the ic-mode machine property or try
ic-mode=xics or ic-mode=dual

No XIVE support in KVM

For guest OSes supporting XIVE, the resulting interrupt modes on host
kernels without XIVE KVM support are the following:

	ic-mode

	kernel_irqchip

	/

	allowed
(default)

	off

	on

	dual (default)

	XIVE emul.(1)

	XIVE emul.

	QEMU error (2)

	xive

	XIVE emul.(1)

	XIVE emul.

	QEMU error (2)

	xics

	XICS KVM

	XICS emul.

	XICS KVM

	QEMU warns with warning: kernel_irqchip requested but unavailable:
IRQ_XIVE capability must be present for KVM

	QEMU fails with kernel_irqchip requested but unavailable:
IRQ_XIVE capability must be present for KVM

For legacy guest OSes without XIVE support, the resulting interrupt
modes are the following:

	ic-mode

	kernel_irqchip

	/

	allowed
(default)

	off

	on

	dual (default)

	QEMU error(4)

	XICS emul.

	QEMU error(4)

	xive

	QEMU error(3)

	QEMU error(3)

	QEMU error(3)

	xics

	XICS KVM

	XICS emul.

	XICS KVM

	QEMU fails at CAS with Guest requested unavailable interrupt
mode (XICS), either don't set the ic-mode machine property or try
ic-mode=xics or ic-mode=dual

	QEMU/KVM incompatibility due to device destruction in reset. QEMU fails
with KVM is too old to support ic-mode=dual,kernel-irqchip=on

XIVE Device tree properties

The properties for the PAPR interrupt controller node when the XIVE
native exploitation mode is selected shoud contain:

	device_type

value should be “power-ivpe”.

	compatible

value should be “ibm,power-ivpe”.

	reg

contains the base address and size of the thread interrupt
managnement areas (TIMA), for the User level and for the Guest OS
level. Only the Guest OS level is taken into account today.

	ibm,xive-eq-sizes

the size of the event queues. One cell per size supported, contains
log2 of size, in ascending order.

	ibm,xive-lisn-ranges

the IRQ interrupt number ranges assigned to the guest for the IPIs.

The root node also exports :

	ibm,plat-res-int-priorities

contains a list of priorities that the hypervisor has reserved for
its own use.

IRQ number space

IRQ Number space of the pseries machine is 8K wide and is the same
for both interrupt mode. The different ranges are defined as follow :

	0x0000 .. 0x0FFF 4K CPU IPIs (only used under XIVE)

	0x1000 .. 0x1000 1 EPOW

	0x1001 .. 0x1001 1 HOTPLUG

	0x1002 .. 0x10FF unused

	0x1100 .. 0x11FF 256 VIO devices

	0x1200 .. 0x127F 32x4 LSIs for PHB devices

	0x1280 .. 0x12FF unused

	0x1300 .. 0x1FFF PHB MSIs (dynamically allocated)

Monitoring XIVE

The state of the XIVE interrupt controller can be queried through the
monitor commands info pic. The output comes in two parts.

First, the state of the thread interrupt context registers is dumped
for each CPU :

(qemu) info pic
CPU[0000]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR W2
CPU[0000]: USER 00 00 00 00 00 00 00 00 00000000
CPU[0000]: OS 00 ff 00 00 ff 00 ff ff 80000400
CPU[0000]: POOL 00 00 00 00 00 00 00 00 00000000
CPU[0000]: PHYS 00 00 00 00 00 00 00 ff 00000000
...

In the case of a pseries machine, QEMU acts as the hypervisor and only
the O/S and USER register rings make sense. W2 contains the vCPU CAM
line which is set to the VP identifier.

Then comes the routing information which aggregates the EAS and the
END configuration:

...
LISN PQ EISN CPU/PRIO EQ
00000000 MSI -- 00000010 0/6 380/16384 @1fe3e0000 ^1 [80000010 ...]
00000001 MSI -- 00000010 1/6 305/16384 @1fc230000 ^1 [80000010 ...]
00000002 MSI -- 00000010 2/6 220/16384 @1fc2f0000 ^1 [80000010 ...]
00000003 MSI -- 00000010 3/6 201/16384 @1fc390000 ^1 [80000010 ...]
00000004 MSI -Q M 00000000
00000005 MSI -Q M 00000000
00000006 MSI -Q M 00000000
00000007 MSI -Q M 00000000
00001000 MSI -- 00000012 0/6 380/16384 @1fe3e0000 ^1 [80000010 ...]
00001001 MSI -- 00000013 0/6 380/16384 @1fe3e0000 ^1 [80000010 ...]
00001100 MSI -- 00000100 1/6 305/16384 @1fc230000 ^1 [80000010 ...]
00001101 MSI -Q M 00000000
00001200 LSI -Q M 00000000
00001201 LSI -Q M 00000000
00001202 LSI -Q M 00000000
00001203 LSI -Q M 00000000
00001300 MSI -- 00000102 1/6 305/16384 @1fc230000 ^1 [80000010 ...]
00001301 MSI -- 00000103 2/6 220/16384 @1fc2f0000 ^1 [80000010 ...]
00001302 MSI -- 00000104 3/6 201/16384 @1fc390000 ^1 [80000010 ...]

The source information and configuration:

	The LISN column outputs the interrupt number of the source in
range [0x0 ... 0x1FFF] and its type : MSI or LSI

	The PQ column reflects the state of the PQ bits of the source :

	-- source is ready to take events

	P- an event was sent and an EOI is PENDING

	PQ an event was QUEUED

	-Q source is OFF

a M indicates that source is MASKED at the EAS level,

The targeting configuration :

	The EISN column is the event data that will be queued in the event
queue of the O/S.

	The CPU/PRIO column is the tuple defining the CPU number and
priority queue serving the source.

	The EQ column outputs :

	the current index of the event queue/ the max number of entries

	the O/S event queue address

	the toggle bit

	the last entries that were pushed in the event queue.

QEMU and ACPI BIOS Generic Event Device interface

The ACPI Generic Event Device (GED) is a HW reduced platform
specific device introduced in ACPI v6.1 that handles all platform
events, including the hotplug ones. GED is modelled as a device
in the namespace with a _HID defined to be ACPI0013. This document
describes the interface between QEMU and the ACPI BIOS.

GED allows HW reduced platforms to handle interrupts in ACPI ASL
statements. It follows a very similar approach to the _EVT method
from GPIO events. All interrupts are listed in _CRS and the handler
is written in _EVT method. However, the QEMU implementation uses a
single interrupt for the GED device, relying on an IO memory region
to communicate the type of device affected by the interrupt. This way,
we can support up to 32 events with a unique interrupt.

Here is an example,

Device (_SB.GED)
{
 Name (_HID, "ACPI0013")
 Name (_UID, Zero)
 Name (_CRS, ResourceTemplate ()
 {
 Interrupt (ResourceConsumer, Edge, ActiveHigh, Exclusive, ,,)
 {
 0x00000029,
 }
 })
 OperationRegion (EREG, SystemMemory, 0x09080000, 0x04)
 Field (EREG, DWordAcc, NoLock, WriteAsZeros)
 {
 ESEL, 32
 }
 Method (_EVT, 1, Serialized)
 {
 Local0 = ESEL // ESEL = IO memory region which specifies the
 // device type.
 If (((Local0 & One) == One))
 {
 MethodEvent1()
 }
 If ((Local0 & 0x2) == 0x2)
 {
 MethodEvent2()
 }
 ...
 }
}

GED IO interface (4 byte access)

read access:

[0x0-0x3] Event selector bit field (32 bit) set by QEMU.

 bits:
 0: Memory hotplug event
 1: System power down event
 2-31: Reserved

write_access:

Nothing is expected to be written into GED IO memory

QEMU TPM Device

Guest-side hardware interface

TIS interface

The QEMU TPM emulation implements a TPM TIS hardware interface
following the Trusted Computing Group’s specification “TCG PC Client
Specific TPM Interface Specification (TIS)”, Specification Version
1.3, 21 March 2013. (see the TIS specification [https://trustedcomputinggroup.org/pc-client-work-group-pc-client-specific-tpm-interface-specification-tis/], or a later version
of it).

The TIS interface makes a memory mapped IO region in the area
0xfed40000-0xfed44fff available to the guest operating system.

	QEMU files related to TPM TIS interface:

	
	hw/tpm/tpm_tis.c

	hw/tpm/tpm_tis.h

CRB interface

QEMU also implements a TPM CRB interface following the Trusted
Computing Group’s specification “TCG PC Client Platform TPM Profile
(PTP) Specification”, Family “2.0”, Level 00 Revision 01.03 v22, May
22, 2017. (see the CRB specification [https://trustedcomputinggroup.org/resource/pc-client-platform-tpm-profile-ptp-specification/], or a later version of it)

The CRB interface makes a memory mapped IO region in the area
0xfed40000-0xfed40fff (1 locality) available to the guest
operating system.

	QEMU files related to TPM CRB interface:

	
	hw/tpm/tpm_crb.c

SPAPR interface

pSeries (ppc64) machines offer a tpm-spapr device model.

	QEMU files related to the SPAPR interface:

	
	hw/tpm/tpm_spapr.c

fw_cfg interface

The bios/firmware may read the "etc/tpm/config" fw_cfg entry for
configuring the guest appropriately.

The entry of 6 bytes has the following content, in little-endian:

#define TPM_VERSION_UNSPEC 0
#define TPM_VERSION_1_2 1
#define TPM_VERSION_2_0 2

#define TPM_PPI_VERSION_NONE 0
#define TPM_PPI_VERSION_1_30 1

struct FwCfgTPMConfig {
 uint32_t tpmppi_address; /* PPI memory location */
 uint8_t tpm_version; /* TPM version */
 uint8_t tpmppi_version; /* PPI version */
};

ACPI interface

The TPM device is defined with ACPI ID “PNP0C31”. QEMU builds a SSDT
and passes it into the guest through the fw_cfg device. The device
description contains the base address of the TIS interface 0xfed40000
and the size of the MMIO area (0x5000). In case a TPM2 is used by
QEMU, a TPM2 ACPI table is also provided. The device is described to
be used in polling mode rather than interrupt mode primarily because
no unused IRQ could be found.

To support measurement logs to be written by the firmware,
e.g. SeaBIOS, a TCPA table is implemented. This table provides a 64kb
buffer where the firmware can write its log into. For TPM 2 only a
more recent version of the TPM2 table provides support for
measurements logs and a TCPA table does not need to be created.

The TCPA and TPM2 ACPI tables follow the Trusted Computing Group
specification “TCG ACPI Specification” Family “1.2” and “2.0”, Level
00 Revision 00.37. (see the ACPI specification [https://trustedcomputinggroup.org/tcg-acpi-specification/], or a later version
of it)

ACPI PPI Interface

QEMU supports the Physical Presence Interface (PPI) for TPM 1.2 and
TPM 2. This interface requires ACPI and firmware support. (see the
PPI specification [https://trustedcomputinggroup.org/resource/tcg-physical-presence-interface-specification/])

PPI enables a system administrator (root) to request a modification to
the TPM upon reboot. The PPI specification defines the operation
requests and the actions the firmware has to take. The system
administrator passes the operation request number to the firmware
through an ACPI interface which writes this number to a memory
location that the firmware knows. Upon reboot, the firmware finds the
number and sends commands to the TPM. The firmware writes the TPM
result code and the operation request number to a memory location that
ACPI can read from and pass the result on to the administrator.

The PPI specification defines a set of mandatory and optional
operations for the firmware to implement. The ACPI interface also
allows an administrator to list the supported operations. In QEMU the
ACPI code is generated by QEMU, yet the firmware needs to implement
support on a per-operations basis, and different firmwares may support
a different subset. Therefore, QEMU introduces the virtual memory
device for PPI where the firmware can indicate which operations it
supports and ACPI can enable the ones that are supported and disable
all others. This interface lies in main memory and has the following
layout:

	Field

	Length

	Offset

	Description

	func

	0x100

	0x000

	Firmware sets values for each supported
operation. See defined values below.

	ppin

	0x1

	0x100

	SMI interrupt to use. Set by firmware.
Not supported.

	ppip

	0x4

	0x101

	ACPI function index to pass to SMM code.
Set by ACPI. Not supported.

	pprp

	0x4

	0x105

	Result of last executed operation. Set by
firmware. See function index 5 for values.

	pprq

	0x4

	0x109

	Operation request number to execute. See
‘Physical Presence Interface Operation
Summary’ tables in specs. Set by ACPI.

	pprm

	0x4

	0x10d

	Operation request optional parameter.
Values depend on operation. Set by ACPI.

	lppr

	0x4

	0x111

	Last executed operation request number.
Copied from pprq field by firmware.

	fret

	0x4

	0x115

	Result code from SMM function.
Not supported.

	res1

	0x40

	0x119

	Reserved for future use

	next_step

	0x1

	0x159

	Operation to execute after reboot by
firmware. Used by firmware.

	movv

	0x1

	0x15a

	Memory overwrite variable

The following values are supported for the func field. They
correspond to the values used by ACPI function index 8.

	Value

	Description

	0

	Operation is not implemented.

	1

	Operation is only accessible through firmware.

	2

	Operation is blocked for OS by firmware configuration.

	3

	Operation is allowed and physically present user required.

	4

	Operation is allowed and physically present user is not
required.

The location of the table is given by the fw_cfg tpmppi_address
field. The PPI memory region size is 0x400 (TPM_PPI_ADDR_SIZE) to
leave enough room for future updates.

	QEMU files related to TPM ACPI tables:

	
	hw/i386/acpi-build.c

	include/hw/acpi/tpm.h

TPM backend devices

The TPM implementation is split into two parts, frontend and
backend. The frontend part is the hardware interface, such as the TPM
TIS interface described earlier, and the other part is the TPM backend
interface. The backend interfaces implement the interaction with a TPM
device, which may be a physical or an emulated device. The split
between the front- and backend devices allows a frontend to be
connected with any available backend. This enables the TIS interface
to be used with the passthrough backend or the swtpm backend.

	QEMU files related to TPM backends:

	
	backends/tpm.c

	include/sysemu/tpm_backend.h

	include/sysemu/tpm_backend_int.h

The QEMU TPM passthrough device

In case QEMU is run on Linux as the host operating system it is
possible to make the hardware TPM device available to a single QEMU
guest. In this case the user must make sure that no other program is
using the device, e.g., /dev/tpm0, before trying to start QEMU with
it.

The passthrough driver uses the host’s TPM device for sending TPM
commands and receiving responses from. Besides that it accesses the
TPM device’s sysfs entry for support of command cancellation. Since
none of the state of a hardware TPM can be migrated between hosts,
virtual machine migration is disabled when the TPM passthrough driver
is used.

Since the host’s TPM device will already be initialized by the host’s
firmware, certain commands, e.g. TPM_Startup(), sent by the
virtual firmware for device initialization, will fail. In this case
the firmware should not use the TPM.

Sharing the device with the host is generally not a recommended usage
scenario for a TPM device. The primary reason for this is that two
operating systems can then access the device’s single set of
resources, such as platform configuration registers
(PCRs). Applications or kernel security subsystems, such as the Linux
Integrity Measurement Architecture (IMA), are not expecting to share
PCRs.

	QEMU files related to the TPM passthrough device:

	
	hw/tpm/tpm_passthrough.c

	hw/tpm/tpm_util.c

	hw/tpm/tpm_util.h

Command line to start QEMU with the TPM passthrough device using the host’s
hardware TPM /dev/tpm0:

qemu-system-x86_64 -display sdl -accel kvm \
-m 1024 -boot d -bios bios-256k.bin -boot menu=on \
-tpmdev passthrough,id=tpm0,path=/dev/tpm0 \
-device tpm-tis,tpmdev=tpm0 test.img

The following commands should result in similar output inside the VM
with a Linux kernel that either has the TPM TIS driver built-in or
available as a module:

dmesg | grep -i tpm
[0.711310] tpm_tis 00:06: 1.2 TPM (device=id 0x1, rev-id 1)

dmesg | grep TCPA
[0.000000] ACPI: TCPA 0x0000000003FFD191C 000032 (v02 BOCHS \
 BXPCTCPA 0000001 BXPC 00000001)

ls -l /dev/tpm*
crw-------. 1 root root 10, 224 Jul 11 10:11 /dev/tpm0

find /sys/devices/ | grep pcrs$ | xargs cat
PCR-00: 35 4E 3B CE 23 9F 38 59 ...
...
PCR-23: 00 00 00 00 00 00 00 00 ...

The QEMU TPM emulator device

The TPM emulator device uses an external TPM emulator called ‘swtpm’
for sending TPM commands to and receiving responses from. The swtpm
program must have been started before trying to access it through the
TPM emulator with QEMU.

The TPM emulator implements a command channel for transferring TPM
commands and responses as well as a control channel over which control
commands can be sent. (see the SWTPM protocol [https://github.com/stefanberger/swtpm/blob/master/man/man3/swtpm_ioctls.pod] specification)

The control channel serves the purpose of resetting, initializing, and
migrating the TPM state, among other things.

The swtpm program behaves like a hardware TPM and therefore needs to
be initialized by the firmware running inside the QEMU virtual
machine. One necessary step for initializing the device is to send
the TPM_Startup command to it. SeaBIOS, for example, has been
instrumented to initialize a TPM 1.2 or TPM 2 device using this
command.

	QEMU files related to the TPM emulator device:

	
	hw/tpm/tpm_emulator.c

	hw/tpm/tpm_util.c

	hw/tpm/tpm_util.h

The following commands start the swtpm with a UnixIO control channel over
a socket interface. They do not need to be run as root.

mkdir /tmp/mytpm1
swtpm socket --tpmstate dir=/tmp/mytpm1 \
 --ctrl type=unixio,path=/tmp/mytpm1/swtpm-sock \
 --log level=20

Command line to start QEMU with the TPM emulator device communicating
with the swtpm (x86):

qemu-system-x86_64 -display sdl -accel kvm \
 -m 1024 -boot d -bios bios-256k.bin -boot menu=on \
 -chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
 -tpmdev emulator,id=tpm0,chardev=chrtpm \
 -device tpm-tis,tpmdev=tpm0 test.img

In case a pSeries machine is emulated, use the following command line:

qemu-system-ppc64 -display sdl -machine pseries,accel=kvm \
 -m 1024 -bios slof.bin -boot menu=on \
 -nodefaults -device VGA -device pci-ohci -device usb-kbd \
 -chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
 -tpmdev emulator,id=tpm0,chardev=chrtpm \
 -device tpm-spapr,tpmdev=tpm0 \
 -device spapr-vscsi,id=scsi0,reg=0x00002000 \
 -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x3,drive=drive-virtio-disk0,id=virtio-disk0 \
 -drive file=test.img,format=raw,if=none,id=drive-virtio-disk0

In case SeaBIOS is used as firmware, it should show the TPM menu item
after entering the menu with ‘ESC’.

Select boot device:
1. DVD/CD [ata1-0: QEMU DVD-ROM ATAPI-4 DVD/CD]
[...]
5. Legacy option rom

t. TPM Configuration

The following commands should result in similar output inside the VM
with a Linux kernel that either has the TPM TIS driver built-in or
available as a module:

dmesg | grep -i tpm
[0.711310] tpm_tis 00:06: 1.2 TPM (device=id 0x1, rev-id 1)

dmesg | grep TCPA
[0.000000] ACPI: TCPA 0x0000000003FFD191C 000032 (v02 BOCHS \
 BXPCTCPA 0000001 BXPC 00000001)

ls -l /dev/tpm*
crw-------. 1 root root 10, 224 Jul 11 10:11 /dev/tpm0

find /sys/devices/ | grep pcrs$ | xargs cat
PCR-00: 35 4E 3B CE 23 9F 38 59 ...
...
PCR-23: 00 00 00 00 00 00 00 00 ...

Migration with the TPM emulator

The TPM emulator supports the following types of virtual machine
migration:

	VM save / restore (migration into a file)

	Network migration

	Snapshotting (migration into storage like QoW2 or QED)

The following command sequences can be used to test VM save / restore.

In a 1st terminal start an instance of a swtpm using the following command:

mkdir /tmp/mytpm1
swtpm socket --tpmstate dir=/tmp/mytpm1 \
 --ctrl type=unixio,path=/tmp/mytpm1/swtpm-sock \
 --log level=20 --tpm2

In a 2nd terminal start the VM:

qemu-system-x86_64 -display sdl -accel kvm \
 -m 1024 -boot d -bios bios-256k.bin -boot menu=on \
 -chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
 -tpmdev emulator,id=tpm0,chardev=chrtpm \
 -device tpm-tis,tpmdev=tpm0 \
 -monitor stdio \
 test.img

Verify that the attached TPM is working as expected using applications
inside the VM.

To store the state of the VM use the following command in the QEMU
monitor in the 2nd terminal:

(qemu) migrate "exec:cat > testvm.bin"
(qemu) quit

At this point a file called testvm.bin should exists and the swtpm
and QEMU processes should have ended.

To test ‘VM restore’ you have to start the swtpm with the same
parameters as before. If previously a TPM 2 [–tpm2] was saved, –tpm2
must now be passed again on the command line.

In the 1st terminal restart the swtpm with the same command line as
before:

swtpm socket --tpmstate dir=/tmp/mytpm1 \
 --ctrl type=unixio,path=/tmp/mytpm1/swtpm-sock \
 --log level=20 --tpm2

In the 2nd terminal restore the state of the VM using the additional
‘-incoming’ option.

qemu-system-x86_64 -display sdl -accel kvm \
 -m 1024 -boot d -bios bios-256k.bin -boot menu=on \
 -chardev socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock \
 -tpmdev emulator,id=tpm0,chardev=chrtpm \
 -device tpm-tis,tpmdev=tpm0 \
 -incoming "exec:cat < testvm.bin" \
 test.img

Troubleshooting migration

There are several reasons why migration may fail. In case of problems,
please ensure that the command lines adhere to the following rules
and, if possible, that identical versions of QEMU and swtpm are used
at all times.

VM save and restore:

	QEMU command line parameters should be identical apart from the
‘-incoming’ option on VM restore

	swtpm command line parameters should be identical

VM migration to ‘localhost’:

	QEMU command line parameters should be identical apart from the
‘-incoming’ option on the destination side

	swtpm command line parameters should point to two different
directories on the source and destination swtpm (–tpmstate dir=…)
(especially if different versions of libtpms were to be used on the
same machine).

VM migration across the network:

	QEMU command line parameters should be identical apart from the
‘-incoming’ option on the destination side

	swtpm command line parameters should be identical

	VM Snapshotting:

	
	QEMU command line parameters should be identical

	swtpm command line parameters should be identical

Besides that, migration failure reasons on the swtpm level may include
the following:

	the versions of the swtpm on the source and destination sides are
incompatible

	downgrading of TPM state may not be supported

	the source and destination libtpms were compiled with different
compile-time options and the destination side refuses to accept the
state

	different migration keys are used on the source and destination side
and the destination side cannot decrypt the migrated state
(swtpm … –migration-key …)

QEMU System Emulation User’s Guide

This manual is the overall guide for users using QEMU
for full system emulation (as opposed to user-mode emulation).
This includes working with hypervisors such as KVM, Xen, Hax
or Hypervisor.Framework.

Contents:

	Quick Start

	Invocation
	Standard options

	Block device options

	USB options

	Display options

	i386 target only

	Network options

	Character device options

	TPM device options

	Linux/Multiboot boot specific

	Debug/Expert options

	Generic object creation

	Device URL Syntax

	Keys in the graphical frontends

	Keys in the character backend multiplexer

	QEMU Monitor
	Commands

	Integer expressions

	Disk Images
	Quick start for disk image creation

	Snapshot mode

	VM snapshots

	Disk image file formats

	Read-only formats

	Using host drives
	Linux

	Windows

	Mac OS X

	Virtual FAT disk images

	NBD access

	Sheepdog disk images

	iSCSI LUNs

	GlusterFS disk images

	Secure Shell (ssh) disk images

	NVMe disk images

	Disk image file locking

	Network emulation
	Using TAP network interfaces
	Linux host

	Windows host

	Using the user mode network stack

	Hubs

	Connecting emulated networks between QEMU instances

	USB emulation
	Connecting USB devices

	Using host USB devices on a Linux host

	Inter-VM Shared Memory device
	Migration with ivshmem

	ivshmem and hugepages

	Direct Linux Boot

	VNC security
	Without passwords

	With passwords

	With x509 certificates

	With x509 certificates and client verification

	With x509 certificates, client verification and passwords

	With SASL authentication

	With x509 certificates and SASL authentication

	Configuring SASL mechanisms

	TLS setup for network services
	Setup the Certificate Authority

	Issuing server certificates

	Issuing client certificates

	TLS x509 credential configuration

	TLS Pre-Shared Keys (PSK)

	GDB usage

	Managed start up options

	QEMU System Emulator Targets
	x86 (PC) System emulator
	Peripherals

	Recommendations for KVM CPU model configuration on x86 hosts

	Syntax for configuring CPU models

	OS requirements

	PowerPC System emulator

	Sparc32 System emulator

	Sparc64 System emulator

	MIPS System emulator
	Supported CPU model configurations on MIPS hosts

	nanoMIPS System emulator

	ARM System emulator

	ColdFire System emulator

	Xtensa System emulator

	Security
	Overview

	Security Requirements
	Virtualization Use Case

	Non-virtualization Use Case

	Architecture
	Guest Isolation

	Principle of Least Privilege

	Isolation mechanisms

	Sensitive configurations
	Monitor console (QMP and HMP)

	Adjunct Processor (AP) Device
	Introduction

	AP Architectural Overview

	Start Interpretive Execution (SIE) Instruction
	Example 1: Valid configuration

	Example 2: Valid configuration

	Example 3: Invalid configuration

	AP Matrix Configuration on Linux Host
	Binding AP devices to device drivers

	Configuring an AP matrix for a linux guest

	Starting a Linux Guest Configured with an AP Matrix

	Hot plug a vfio-ap device into a running guest

	Hot unplug a vfio-ap device from a running guest

	Example: Configure AP Matrices for Three Linux Guests

	Limitations

	Deprecated features
	System emulator command line arguments
	-machine enforce-config-section=on|off (since 3.1)

	-no-kvm (since 1.3.0)

	-usbdevice (since 2.10.0)

	-drive file=json:{...{'driver':'file'}} (since 3.0)

	-net ...,name=name (since 3.1)

	-smp (invalid topologies) (since 3.1)

	-vnc acl (since 4.0.0)

	QEMU_AUDIO_ environment variables and -audio-help (since 4.0)

	Creating sound card devices and vnc without audiodev= property (since 4.2)

	-mon ...,control=readline,pretty=on|off (since 4.1)

	-realtime (since 4.1)

	-numa node,mem=size (since 4.1)

	-numa node (without memory specified) (since 4.1)

	-mem-path fallback to RAM (since 4.1)

	RISC-V -bios (since 4.1)

	-tb-size option (since 5.0)

	-show-cursor option (since 5.0)

	QEMU Machine Protocol (QMP) commands
	change (since 2.5.0)

	migrate_set_downtime and migrate_set_speed (since 2.8.0)

	migrate-set-cache-size and query-migrate-cache-size (since 2.11.0)

	query-block result field dirty-bitmaps[i].status (since 4.0)

	query-block result field dirty-bitmaps (Since 4.2)

	query-cpus (since 2.12.0)

	query-cpus-fast arch output member (since 3.0.0)

	cpu-add (since 4.0)

	query-events (since 4.0)

	chardev client socket with wait option (since 4.0)

	Human Monitor Protocol (HMP) commands
	The hub_id parameter of hostfwd_add / hostfwd_remove (since 3.1)

	cpu-add (since 4.0)

	acl_show, acl_reset, acl_policy, acl_add, acl_remove (since 4.0.0)

	Guest Emulator ISAs
	RISC-V ISA privledge specification version 1.09.1 (since 4.1)

	System emulator CPUS
	RISC-V ISA CPUs (since 4.1)

	RISC-V ISA CPUs (since 4.1)

	System emulator devices
	ide-drive (since 4.2)

	scsi-disk (since 4.2)

	System emulator machines
	mips r4k platform (since 5.0)

	pc-1.0, pc-1.1, pc-1.2 and pc-1.3 (since 5.0)

	spike_v1.9.1 and spike_v1.10 (since 4.1)

	Device options
	Emulated device options

	Block device options

	Related binaries
	qemu-img convert -n -o (since 4.2.0)

	Backwards compatibility
	Runnability guarantee of CPU models (since 4.1.0)

	Recently removed features
	QEMU Machine Protocol (QMP) commands
	block-dirty-bitmap-add “autoload” parameter (since 4.2.0)

	Related binaries
	qemu-nbd --partition (removed in 5.0.0)

	Supported build platforms
	Linux OS

	Windows

	macOS

	FreeBSD

	NetBSD

	OpenBSD

	License

Quick Start

Download and uncompress a PC hard disk image with Linux installed (e.g.
linux.img) and type:

qemu-system-x86_64 linux.img

Linux should boot and give you a prompt.

Invocation

qemu-system-x86_64 [options] [disk_image]

disk_image is a raw hard disk image for IDE hard disk 0. Some targets do
not need a disk image.

Standard options

	-h

	Display help and exit

	-version

	Display version information and exit

	-machine [type=]name[,prop=value[,...]]

	Select the emulated machine by name. Use -machine help to list
available machines.

For architectures which aim to support live migration compatibility
across releases, each release will introduce a new versioned machine
type. For example, the 2.8.0 release introduced machine types
“pc-i440fx-2.8” and “pc-q35-2.8” for the x86_64/i686 architectures.

To allow live migration of guests from QEMU version 2.8.0, to QEMU
version 2.9.0, the 2.9.0 version must support the “pc-i440fx-2.8”
and “pc-q35-2.8” machines too. To allow users live migrating VMs to
skip multiple intermediate releases when upgrading, new releases of
QEMU will support machine types from many previous versions.

Supported machine properties are:

	accel=accels1[:accels2[:...]]

	This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available.
By default, tcg is used. If there is more than one accelerator
specified, the next one is used if the previous one fails to
initialize.

	vmport=on|off|auto

	Enables emulation of VMWare IO port, for vmmouse etc. auto says
to select the value based on accel. For accel=xen the default is
off otherwise the default is on.

	dump-guest-core=on|off

	Include guest memory in a core dump. The default is on.

	mem-merge=on|off

	Enables or disables memory merge support. This feature, when
supported by the host, de-duplicates identical memory pages
among VMs instances (enabled by default).

	aes-key-wrap=on|off

	Enables or disables AES key wrapping support on s390-ccw hosts.
This feature controls whether AES wrapping keys will be created
to allow execution of AES cryptographic functions. The default
is on.

	dea-key-wrap=on|off

	Enables or disables DEA key wrapping support on s390-ccw hosts.
This feature controls whether DEA wrapping keys will be created
to allow execution of DEA cryptographic functions. The default
is on.

	nvdimm=on|off

	Enables or disables NVDIMM support. The default is off.

	enforce-config-section=on|off

	If enforce-config-section is set to on, force migration code
to send configuration section even if the machine-type sets the
migration.send-configuration property to off. NOTE: this
parameter is deprecated. Please use -global
migration.send-configuration=on|off instead.

	memory-encryption=

	Memory encryption object to use. The default is none.

	hmat=on|off

	Enables or disables ACPI Heterogeneous Memory Attribute Table
(HMAT) support. The default is off.

	-cpu model

	Select CPU model (-cpu help for list and additional feature
selection)

	-accel name[,prop=value[,...]]

	This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available. By
default, tcg is used. If there is more than one accelerator
specified, the next one is used if the previous one fails to
initialize.

	igd-passthru=on|off

	When Xen is in use, this option controls whether Intel
integrated graphics devices can be passed through to the guest
(default=off)

	kernel-irqchip=on|off|split

	Controls KVM in-kernel irqchip support. The default is full
acceleration of the interrupt controllers. On x86, split irqchip
reduces the kernel attack surface, at a performance cost for
non-MSI interrupts. Disabling the in-kernel irqchip completely
is not recommended except for debugging purposes.

	kvm-shadow-mem=size

	Defines the size of the KVM shadow MMU.

	tb-size=n

	Controls the size (in MiB) of the TCG translation block cache.

	thread=single|multi

	Controls number of TCG threads. When the TCG is multi-threaded
there will be one thread per vCPU therefor taking advantage of
additional host cores. The default is to enable multi-threading
where both the back-end and front-ends support it and no
incompatible TCG features have been enabled (e.g.
icount/replay).

	-smp [cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]

	Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs
are supported. On Sparc32 target, Linux limits the number of usable
CPUs to 4. For the PC target, the number of cores per die, the
number of threads per cores, the number of dies per packages and the
total number of sockets can be specified. Missing values will be
computed. If any on the three values is given, the total number of
CPUs n can be omitted. maxcpus specifies the maximum number of
hotpluggable CPUs.

	-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]

	

	-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]

	

	-numa dist,src=source,dst=destination,val=distance

	

	-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]

	

	-numa hmat-lb,initiator=node,target=node,hierarchy=hierarchy,data-type=tpye[,latency=lat][,bandwidth=bw]

	

	-numa hmat-cache,node-id=node,size=size,level=level[,associativity=str][,policy=str][,line=size]

	Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA
distance from a source node to a destination node. Set the ACPI
Heterogeneous Memory Attributes for the given nodes.

Legacy VCPU assignment uses ‘cpus’ option where firstcpu and
lastcpu are CPU indexes. Each ‘cpus’ option represent a
contiguous range of CPU indexes (or a single VCPU if lastcpu is
omitted). A non-contiguous set of VCPUs can be represented by
providing multiple ‘cpus’ options. If ‘cpus’ is
omitted on all nodes, VCPUs are automatically split between them.

For example, the following option assigns VCPUs 0, 1, 2 and 5 to a
NUMA node:

-numa node,cpus=0-2,cpus=5

‘cpu’ option is a new alternative to ‘cpus’ option
which uses ‘socket-id|core-id|thread-id’ properties to
assign CPU objects to a node using topology layout properties of
CPU. The set of properties is machine specific, and depends on used
machine type/’smp’ options. It could be queried with
‘hotpluggable-cpus’ monitor command. ‘node-id’
property specifies node to which CPU object will be assigned, it’s
required for node to be declared with ‘node’ option before
it’s used with ‘cpu’ option.

For example:

-M pc \
-smp 1,sockets=2,maxcpus=2 \
-numa node,nodeid=0 -numa node,nodeid=1 \
-numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1

‘mem’ assigns a given RAM amount to a node. ‘memdev’
assigns RAM from a given memory backend device to a node. If
‘mem’ and ‘memdev’ are omitted in all nodes, RAM is
split equally between them.

‘mem’ and ‘memdev’ are mutually exclusive.
Furthermore, if one node uses ‘memdev’, all of them have to
use it.

‘initiator’ is an additional option that points to an
initiator NUMA node that has best performance (the lowest latency or
largest bandwidth) to this NUMA node. Note that this option can be
set only when the machine property ‘hmat’ is set to ‘on’.

Following example creates a machine with 2 NUMA nodes, node 0 has
CPU. node 1 has only memory, and its initiator is node 0. Note that
because node 0 has CPU, by default the initiator of node 0 is itself
and must be itself.

-machine hmat=on \
-m 2G,slots=2,maxmem=4G \
-object memory-backend-ram,size=1G,id=m0 \
-object memory-backend-ram,size=1G,id=m1 \
-numa node,nodeid=0,memdev=m0 \
-numa node,nodeid=1,memdev=m1,initiator=0 \
-smp 2,sockets=2,maxcpus=2 \
-numa cpu,node-id=0,socket-id=0 \
-numa cpu,node-id=0,socket-id=1

source and destination are NUMA node IDs. distance is the NUMA
distance from source to destination. The distance from a node to
itself is always 10. If any pair of nodes is given a distance, then
all pairs must be given distances. Although, when distances are only
given in one direction for each pair of nodes, then the distances in
the opposite directions are assumed to be the same. If, however, an
asymmetrical pair of distances is given for even one node pair, then
all node pairs must be provided distance values for both directions,
even when they are symmetrical. When a node is unreachable from
another node, set the pair’s distance to 255.

Note that the -numa option doesn’t allocate any of the specified
resources, it just assigns existing resources to NUMA nodes. This
means that one still has to use the -m, -smp options to
allocate RAM and VCPUs respectively.

Use ‘hmat-lb’ to set System Locality Latency and Bandwidth
Information between initiator and target NUMA nodes in ACPI
Heterogeneous Attribute Memory Table (HMAT). Initiator NUMA node can
create memory requests, usually it has one or more processors.
Target NUMA node contains addressable memory.

In ‘hmat-lb’ option, node are NUMA node IDs. hierarchy is
the memory hierarchy of the target NUMA node: if hierarchy is
‘memory’, the structure represents the memory performance; if
hierarchy is ‘first-level|second-level|third-level’, this
structure represents aggregated performance of memory side caches
for each domain. type of ‘data-type’ is type of data represented by
this structure instance: if ‘hierarchy’ is ‘memory’, ‘data-type’ is
‘access|read|write’ latency or ‘access|read|write’ bandwidth of
the target memory; if ‘hierarchy’ is
‘first-level|second-level|third-level’, ‘data-type’ is
‘access|read|write’ hit latency or ‘access|read|write’ hit
bandwidth of the target memory side cache.

lat is latency value in nanoseconds. bw is bandwidth value, the
possible value and units are NUM[M|G|T], mean that the bandwidth
value are NUM byte per second (or MB/s, GB/s or TB/s depending on
used suffix). Note that if latency or bandwidth value is 0, means
the corresponding latency or bandwidth information is not provided.

In ‘hmat-cache’ option, node-id is the NUMA-id of the memory
belongs. size is the size of memory side cache in bytes. level is
the cache level described in this structure, note that the cache
level 0 should not be used with ‘hmat-cache’ option.
associativity is the cache associativity, the possible value is
‘none/direct(direct-mapped)/complex(complex cache indexing)’. policy
is the write policy. line is the cache Line size in bytes.

For example, the following options describe 2 NUMA nodes. Node 0 has
2 cpus and a ram, node 1 has only a ram. The processors in node 0
access memory in node 0 with access-latency 5 nanoseconds,
access-bandwidth is 200 MB/s; The processors in NUMA node 0 access
memory in NUMA node 1 with access-latency 10 nanoseconds,
access-bandwidth is 100 MB/s. And for memory side cache information,
NUMA node 0 and 1 both have 1 level memory cache, size is 10KB,
policy is write-back, the cache Line size is 8 bytes:

-machine hmat=on \
-m 2G \
-object memory-backend-ram,size=1G,id=m0 \
-object memory-backend-ram,size=1G,id=m1 \
-smp 2 \
-numa node,nodeid=0,memdev=m0 \
-numa node,nodeid=1,memdev=m1,initiator=0 \
-numa cpu,node-id=0,socket-id=0 \
-numa cpu,node-id=0,socket-id=1 \
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
-numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
-numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8

	-add-fd fd=fd,set=set[,opaque=opaque]

	Add a file descriptor to an fd set. Valid options are:

	fd=fd

	This option defines the file descriptor of which a duplicate is
added to fd set. The file descriptor cannot be stdin, stdout, or
stderr.

	set=set

	This option defines the ID of the fd set to add the file
descriptor to.

	opaque=opaque

	This option defines a free-form string that can be used to
describe fd.

You can open an image using pre-opened file descriptors from an fd
set:

qemu-system-x86_64 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" -drive file=/dev/fdset/2,index=0,media=disk

	-set group.id.arg=value

	Set parameter arg for item id of type group

	-global driver.prop=value

	

	-global driver=driver,property=property,value=value

	Set default value of driver’s property prop to value, e.g.:

qemu_system-x86_64 -global ide-hd.physical_block_size=4096 disk-image.img

In particular, you can use this to set driver properties for devices
which are created automatically by the machine model. To create a
device which is not created automatically and set properties on it,
use -device.

-global driver.prop=value is shorthand for -global
driver=driver,property=prop,value=value. The longhand syntax works
even when driver contains a dot.

	-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]

	Specify boot order drives as a string of drive letters. Valid drive
letters depend on the target architecture. The x86 PC uses: a, b
(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
(Etherboot from network adapter 1-4), hard disk boot is the default.
To apply a particular boot order only on the first startup, specify
it via once. Note that the order or once parameter
should not be used together with the bootindex property of
devices, since the firmware implementations normally do not support
both at the same time.

Interactive boot menus/prompts can be enabled via menu=on as far
as firmware/BIOS supports them. The default is non-interactive boot.

A splash picture could be passed to bios, enabling user to show it
as logo, when option splash=sp_name is given and menu=on, If
firmware/BIOS supports them. Currently Seabios for X86 system
support it. limitation: The splash file could be a jpeg file or a
BMP file in 24 BPP format(true color). The resolution should be
supported by the SVGA mode, so the recommended is 320x240, 640x480,
800x640.

A timeout could be passed to bios, guest will pause for rb_timeout
ms when boot failed, then reboot. If rb_timeout is ‘-1’, guest will
not reboot, qemu passes ‘-1’ to bios by default. Currently Seabios
for X86 system support it.

Do strict boot via strict=on as far as firmware/BIOS supports
it. This only effects when boot priority is changed by bootindex
options. The default is non-strict boot.

try to boot from network first, then from hard disk
qemu_system-x86_64 -boot order=nc
boot from CD-ROM first, switch back to default order after reboot
qemu_system-x86_64 -boot once=d
boot with a splash picture for 5 seconds.
qemu_system-x86_64 -boot menu=on,splash=/root/boot.bmp,splash-time=5000

Note: The legacy format ‘-boot drives’ is still supported but its
use is discouraged as it may be removed from future versions.

	-m [size=]megs[,slots=n,maxmem=size]

	Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
Optionally, a suffix of “M” or “G” can be used to signify a value in
megabytes or gigabytes respectively. Optional pair slots, maxmem
could be used to set amount of hotpluggable memory slots and maximum
amount of memory. Note that maxmem must be aligned to the page size.

For example, the following command-line sets the guest startup RAM
size to 1GB, creates 3 slots to hotplug additional memory and sets
the maximum memory the guest can reach to 4GB:

qemu-system-x86_64 -m 1G,slots=3,maxmem=4G

If slots and maxmem are not specified, memory hotplug won’t be
enabled and the guest startup RAM will never increase.

	-mem-path path

	Allocate guest RAM from a temporarily created file in path.

	-mem-prealloc

	Preallocate memory when using -mem-path.

	-k language

	Use keyboard layout language (for example fr for French). This
option is only needed where it is not easy to get raw PC keycodes
(e.g. on Macs, with some X11 servers or with a VNC or curses
display). You don’t normally need to use it on PC/Linux or
PC/Windows hosts.

The available layouts are:

ar de-ch es fo fr-ca hu ja mk no pt-br sv
da en-gb et fr fr-ch is lt nl pl ru th
de en-us fi fr-be hr it lv nl-be pt sl tr

The default is en-us.

	-audio-help

	Will show the -audiodev equivalent of the currently specified
(deprecated) environment variables.

	-audiodev [driver=]driver,id=id[,prop[=value][,...]]

	Adds a new audio backend driver identified by id. There are global
and driver specific properties. Some values can be set differently
for input and output, they’re marked with in|out.. You can set
the input’s property with in.prop and the output’s property with
out.prop. For example:

-audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
-audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified

NOTE: parameter validation is known to be incomplete, in many cases
specifying an invalid option causes QEMU to print an error message
and continue emulation without sound.

Valid global options are:

	id=identifier

	Identifies the audio backend.

	timer-period=period

	Sets the timer period used by the audio subsystem in
microseconds. Default is 10000 (10 ms).

	in|out.mixing-engine=on|off

	Use QEMU’s mixing engine to mix all streams inside QEMU and
convert audio formats when not supported by the backend. When
off, fixed-settings must be off too. Note that disabling this
option means that the selected backend must support multiple
streams and the audio formats used by the virtual cards,
otherwise you’ll get no sound. It’s not recommended to disable
this option unless you want to use 5.1 or 7.1 audio, as mixing
engine only supports mono and stereo audio. Default is on.

	in|out.fixed-settings=on|off

	Use fixed settings for host audio. When off, it will change
based on how the guest opens the sound card. In this case you
must not specify frequency, channels or format. Default is on.

	in|out.frequency=frequency

	Specify the frequency to use when using fixed-settings. Default
is 44100Hz.

	in|out.channels=channels

	Specify the number of channels to use when using fixed-settings.
Default is 2 (stereo).

	in|out.format=format

	Specify the sample format to use when using fixed-settings.
Valid values are: s8, s16, s32, u8, u16,
u32. Default is s16.

	in|out.voices=voices

	Specify the number of voices to use. Default is 1.

	in|out.buffer-length=usecs

	Sets the size of the buffer in microseconds.

	-audiodev none,id=id[,prop[=value][,...]]

	Creates a dummy backend that discards all outputs. This backend has
no backend specific properties.

	-audiodev alsa,id=id[,prop[=value][,...]]

	Creates backend using the ALSA. This backend is only available on
Linux.

ALSA specific options are:

	in|out.dev=device

	Specify the ALSA device to use for input and/or output. Default
is default.

	in|out.period-length=usecs

	Sets the period length in microseconds.

	in|out.try-poll=on|off

	Attempt to use poll mode with the device. Default is on.

	threshold=threshold

	Threshold (in microseconds) when playback starts. Default is 0.

	-audiodev coreaudio,id=id[,prop[=value][,...]]

	Creates a backend using Apple’s Core Audio. This backend is only
available on Mac OS and only supports playback.

Core Audio specific options are:

	in|out.buffer-count=count

	Sets the count of the buffers.

	-audiodev dsound,id=id[,prop[=value][,...]]

	Creates a backend using Microsoft’s DirectSound. This backend is
only available on Windows and only supports playback.

DirectSound specific options are:

	latency=usecs

	Add extra usecs microseconds latency to playback. Default is
10000 (10 ms).

	-audiodev oss,id=id[,prop[=value][,...]]

	Creates a backend using OSS. This backend is available on most
Unix-like systems.

OSS specific options are:

	in|out.dev=device

	Specify the file name of the OSS device to use. Default is
/dev/dsp.

	in|out.buffer-count=count

	Sets the count of the buffers.

	in|out.try-poll=on|of

	Attempt to use poll mode with the device. Default is on.

	try-mmap=on|off

	Try using memory mapped device access. Default is off.

	exclusive=on|off

	Open the device in exclusive mode (vmix won’t work in this
case). Default is off.

	dsp-policy=policy

	Sets the timing policy (between 0 and 10, where smaller number
means smaller latency but higher CPU usage). Use -1 to use
buffer sizes specified by buffer and buffer-count. This
option is ignored if you do not have OSS 4. Default is 5.

	-audiodev pa,id=id[,prop[=value][,...]]

	Creates a backend using PulseAudio. This backend is available on
most systems.

PulseAudio specific options are:

	server=server

	Sets the PulseAudio server to connect to.

	in|out.name=sink

	Use the specified source/sink for recording/playback.

	in|out.latency=usecs

	Desired latency in microseconds. The PulseAudio server will try
to honor this value but actual latencies may be lower or higher.

	-audiodev sdl,id=id[,prop[=value][,...]]

	Creates a backend using SDL. This backend is available on most
systems, but you should use your platform’s native backend if
possible. This backend has no backend specific properties.

	-audiodev spice,id=id[,prop[=value][,...]]

	Creates a backend that sends audio through SPICE. This backend
requires -spice and automatically selected in that case, so
usually you can ignore this option. This backend has no backend
specific properties.

	-audiodev wav,id=id[,prop[=value][,...]]

	Creates a backend that writes audio to a WAV file.

Backend specific options are:

	path=path

	Write recorded audio into the specified file. Default is
qemu.wav.

	-soundhw card1[,card2,...] or -soundhw all

	Enable audio and selected sound hardware. Use ‘help’ to print all
available sound hardware. For example:

qemu_system-x86_64 -soundhw sb16,adlib disk.img
qemu_system-x86_64 -soundhw es1370 disk.img
qemu_system-x86_64 -soundhw ac97 disk.img
qemu_system-x86_64 -soundhw hda disk.img
qemu_system-x86_64 -soundhw all disk.img
qemu_system-x86_64 -soundhw help

Note that Linux’s i810_audio OSS kernel (for AC97) module might
require manually specifying clocking.

modprobe i810_audio clocking=48000

	-device driver[,prop[=value][,...]]

	Add device driver. prop=value sets driver properties. Valid
properties depend on the driver. To get help on possible drivers and
properties, use -device help and -device driver,help.

Some drivers are:

	-device ipmi-bmc-sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]

	Add an IPMI BMC. This is a simulation of a hardware management
interface processor that normally sits on a system. It provides a
watchdog and the ability to reset and power control the system. You
need to connect this to an IPMI interface to make it useful

The IPMI slave address to use for the BMC. The default is 0x20. This
address is the BMC’s address on the I2C network of management
controllers. If you don’t know what this means, it is safe to ignore
it.

	id=id

	The BMC id for interfaces to use this device.

	slave_addr=val

	Define slave address to use for the BMC. The default is 0x20.

	sdrfile=file

	file containing raw Sensor Data Records (SDR) data. The default
is none.

	fruareasize=val

	size of a Field Replaceable Unit (FRU) area. The default is
1024.

	frudatafile=file

	file containing raw Field Replaceable Unit (FRU) inventory data.
The default is none.

	guid=uuid

	value for the GUID for the BMC, in standard UUID format. If this
is set, get “Get GUID” command to the BMC will return it.
Otherwise “Get GUID” will return an error.

	-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]

	Add a connection to an external IPMI BMC simulator. Instead of
locally emulating the BMC like the above item, instead connect to an
external entity that provides the IPMI services.

A connection is made to an external BMC simulator. If you do this,
it is strongly recommended that you use the “reconnect=” chardev
option to reconnect to the simulator if the connection is lost. Note
that if this is not used carefully, it can be a security issue, as
the interface has the ability to send resets, NMIs, and power off
the VM. It’s best if QEMU makes a connection to an external
simulator running on a secure port on localhost, so neither the
simulator nor QEMU is exposed to any outside network.

See the “lanserv/README.vm” file in the OpenIPMI library for more
details on the external interface.

	-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]

	Add a KCS IPMI interafce on the ISA bus. This also adds a
corresponding ACPI and SMBIOS entries, if appropriate.

	bmc=id

	The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
above.

	ioport=val

	Define the I/O address of the interface. The default is 0xca0
for KCS.

	irq=val

	Define the interrupt to use. The default is 5. To disable
interrupts, set this to 0.

	-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]

	Like the KCS interface, but defines a BT interface. The default port
is 0xe4 and the default interrupt is 5.

	-name name

	Sets the name of the guest. This name will be displayed in the SDL
window caption. The name will also be used for the VNC server. Also
optionally set the top visible process name in Linux. Naming of
individual threads can also be enabled on Linux to aid debugging.

	-uuid uuid

	Set system UUID.

Block device options

	-fda file

	

	-fdb file

	Use file as floppy disk 0/1 image (see
Disk Images).

	-hda file

	

	-hdb file

	

	-hdc file

	

	-hdd file

	Use file as hard disk 0, 1, 2 or 3 image (see
Disk Images).

	-cdrom file

	Use file as CD-ROM image (you cannot use -hdc and -cdrom at
the same time). You can use the host CD-ROM by using /dev/cdrom
as filename.

	-blockdev option[,option[,option[,...]]]

	Define a new block driver node. Some of the options apply to all
block drivers, other options are only accepted for a specific block
driver. See below for a list of generic options and options for the
most common block drivers.

Options that expect a reference to another node (e.g. file) can
be given in two ways. Either you specify the node name of an already
existing node (file=node-name), or you define a new node inline,
adding options for the referenced node after a dot
(file.filename=path,file.aio=native).

A block driver node created with -blockdev can be used for a
guest device by specifying its node name for the drive property
in a -device argument that defines a block device.

	Valid options for any block driver node:

	
	driver

	Specifies the block driver to use for the given node.

	node-name

	This defines the name of the block driver node by which it
will be referenced later. The name must be unique, i.e. it
must not match the name of a different block driver node, or
(if you use -drive as well) the ID of a drive.

If no node name is specified, it is automatically generated.
The generated node name is not intended to be predictable
and changes between QEMU invocations. For the top level, an
explicit node name must be specified.

	read-only

	Open the node read-only. Guest write attempts will fail.

Note that some block drivers support only read-only access,
either generally or in certain configurations. In this case,
the default value read-only=off does not work and the
option must be specified explicitly.

	auto-read-only

	If auto-read-only=on is set, QEMU may fall back to
read-only usage even when read-only=off is requested, or
even switch between modes as needed, e.g. depending on
whether the image file is writable or whether a writing user
is attached to the node.

	force-share

	Override the image locking system of QEMU by forcing the
node to utilize weaker shared access for permissions where
it would normally request exclusive access. When there is
the potential for multiple instances to have the same file
open (whether this invocation of QEMU is the first or the
second instance), both instances must permit shared access
for the second instance to succeed at opening the file.

Enabling force-share=on requires read-only=on.

	cache.direct

	The host page cache can be avoided with cache.direct=on.
This will attempt to do disk IO directly to the guest’s
memory. QEMU may still perform an internal copy of the data.

	cache.no-flush

	In case you don’t care about data integrity over host
failures, you can use cache.no-flush=on. This option
tells QEMU that it never needs to write any data to the disk
but can instead keep things in cache. If anything goes
wrong, like your host losing power, the disk storage getting
disconnected accidentally, etc. your image will most
probably be rendered unusable.

	discard=discard

	discard is one of “ignore” (or “off”) or “unmap” (or “on”)
and controls whether discard (also known as trim or
unmap) requests are ignored or passed to the filesystem.
Some machine types may not support discard requests.

	detect-zeroes=detect-zeroes

	detect-zeroes is “off”, “on” or “unmap” and enables the
automatic conversion of plain zero writes by the OS to
driver specific optimized zero write commands. You may even
choose “unmap” if discard is set to “unmap” to allow a zero
write to be converted to an unmap operation.

	Driver-specific options for file

	This is the protocol-level block driver for accessing regular
files.

	filename

	The path to the image file in the local filesystem

	aio

	Specifies the AIO backend (threads/native, default: threads)

	locking

	Specifies whether the image file is protected with Linux OFD
/ POSIX locks. The default is to use the Linux Open File
Descriptor API if available, otherwise no lock is applied.
(auto/on/off, default: auto)

Example:

-blockdev driver=file,node-name=disk,filename=disk.img

	Driver-specific options for raw

	This is the image format block driver for raw images. It is
usually stacked on top of a protocol level block driver such as
file.

	file

	Reference to or definition of the data source block driver
node (e.g. a file driver node)

Example 1:

-blockdev driver=file,node-name=disk_file,filename=disk.img
-blockdev driver=raw,node-name=disk,file=disk_file

Example 2:

-blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img

	Driver-specific options for qcow2

	This is the image format block driver for qcow2 images. It is
usually stacked on top of a protocol level block driver such as
file.

	file

	Reference to or definition of the data source block driver
node (e.g. a file driver node)

	backing

	Reference to or definition of the backing file block device
(default is taken from the image file). It is allowed to
pass null here in order to disable the default backing
file.

	lazy-refcounts

	Whether to enable the lazy refcounts feature (on/off;
default is taken from the image file)

	cache-size

	The maximum total size of the L2 table and refcount block
caches in bytes (default: the sum of l2-cache-size and
refcount-cache-size)

	l2-cache-size

	The maximum size of the L2 table cache in bytes (default: if
cache-size is not specified - 32M on Linux platforms, and 8M
on non-Linux platforms; otherwise, as large as possible
within the cache-size, while permitting the requested or the
minimal refcount cache size)

	refcount-cache-size

	The maximum size of the refcount block cache in bytes
(default: 4 times the cluster size; or if cache-size is
specified, the part of it which is not used for the L2
cache)

	cache-clean-interval

	Clean unused entries in the L2 and refcount caches. The
interval is in seconds. The default value is 600 on
supporting platforms, and 0 on other platforms. Setting it
to 0 disables this feature.

	pass-discard-request

	Whether discard requests to the qcow2 device should be
forwarded to the data source (on/off; default: on if
discard=unmap is specified, off otherwise)

	pass-discard-snapshot

	Whether discard requests for the data source should be
issued when a snapshot operation (e.g. deleting a snapshot)
frees clusters in the qcow2 file (on/off; default: on)

	pass-discard-other

	Whether discard requests for the data source should be
issued on other occasions where a cluster gets freed
(on/off; default: off)

	overlap-check

	Which overlap checks to perform for writes to the image
(none/constant/cached/all; default: cached). For details or
finer granularity control refer to the QAPI documentation of
blockdev-add.

Example 1:

-blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
-blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216

Example 2:

-blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2

	Driver-specific options for other drivers

	Please refer to the QAPI documentation of the blockdev-add
QMP command.

	-drive option[,option[,option[,...]]]

	Define a new drive. This includes creating a block driver node (the
backend) as well as a guest device, and is mostly a shortcut for
defining the corresponding -blockdev and -device options.

-drive accepts all options that are accepted by -blockdev.
In addition, it knows the following options:

	file=file

	This option defines which disk image (see
Disk Images) to use with this drive. If
the filename contains comma, you must double it (for instance,
“file=my,,file” to use file “my,file”).

Special files such as iSCSI devices can be specified using
protocol specific URLs. See the section for “Device URL Syntax”
for more information.

	if=interface

	This option defines on which type on interface the drive is
connected. Available types are: ide, scsi, sd, mtd, floppy,
pflash, virtio, none.

	bus=bus,unit=unit

	These options define where is connected the drive by defining
the bus number and the unit id.

	index=index

	This option defines where is connected the drive by using an
index in the list of available connectors of a given interface
type.

	media=media

	This option defines the type of the media: disk or cdrom.

	snapshot=snapshot

	snapshot is “on” or “off” and controls snapshot mode for the
given drive (see -snapshot).

	cache=cache

	cache is “none”, “writeback”, “unsafe”, “directsync” or
“writethrough” and controls how the host cache is used to access
block data. This is a shortcut that sets the cache.direct
and cache.no-flush options (as in -blockdev), and
additionally cache.writeback, which provides a default for
the write-cache option of block guest devices (as in
-device). The modes correspond to the following settings:

	

	cache.writeback

	cache.direct

	cache.no-flush

	writeback

	on

	off

	off

	none

	on

	on

	off

	writethrough

	off

	off

	off

	directsync

	off

	on

	off

	unsafe

	on

	off

	on

The default mode is cache=writeback.

	aio=aio

	aio is “threads”, or “native” and selects between pthread based
disk I/O and native Linux AIO.

	format=format

	Specify which disk format will be used rather than detecting the
format. Can be used to specify format=raw to avoid interpreting
an untrusted format header.

	werror=action,rerror=action

	Specify which action to take on write and read errors. Valid
actions are: “ignore” (ignore the error and try to continue),
“stop” (pause QEMU), “report” (report the error to the guest),
“enospc” (pause QEMU only if the host disk is full; report the
error to the guest otherwise). The default setting is
werror=enospc and rerror=report.

	copy-on-read=copy-on-read

	copy-on-read is “on” or “off” and enables whether to copy read
backing file sectors into the image file.

	bps=b,bps_rd=r,bps_wr=w

	Specify bandwidth throttling limits in bytes per second, either
for all request types or for reads or writes only. Small values
can lead to timeouts or hangs inside the guest. A safe minimum
for disks is 2 MB/s.

	bps_max=bm,bps_rd_max=rm,bps_wr_max=wm

	Specify bursts in bytes per second, either for all request types
or for reads or writes only. Bursts allow the guest I/O to spike
above the limit temporarily.

	iops=i,iops_rd=r,iops_wr=w

	Specify request rate limits in requests per second, either for
all request types or for reads or writes only.

	iops_max=bm,iops_rd_max=rm,iops_wr_max=wm

	Specify bursts in requests per second, either for all request
types or for reads or writes only. Bursts allow the guest I/O to
spike above the limit temporarily.

	iops_size=is

	Let every is bytes of a request count as a new request for iops
throttling purposes. Use this option to prevent guests from
circumventing iops limits by sending fewer but larger requests.

	group=g

	Join a throttling quota group with given name g. All drives that
are members of the same group are accounted for together. Use
this option to prevent guests from circumventing throttling
limits by using many small disks instead of a single larger
disk.

By default, the cache.writeback=on mode is used. It will report
data writes as completed as soon as the data is present in the host
page cache. This is safe as long as your guest OS makes sure to
correctly flush disk caches where needed. If your guest OS does not
handle volatile disk write caches correctly and your host crashes or
loses power, then the guest may experience data corruption.

For such guests, you should consider using cache.writeback=off.
This means that the host page cache will be used to read and write
data, but write notification will be sent to the guest only after
QEMU has made sure to flush each write to the disk. Be aware that
this has a major impact on performance.

When using the -snapshot option, unsafe caching is always used.

Copy-on-read avoids accessing the same backing file sectors
repeatedly and is useful when the backing file is over a slow
network. By default copy-on-read is off.

Instead of -cdrom you can use:

qemu-system-x86_64 -drive file=file,index=2,media=cdrom

Instead of -hda, -hdb, -hdc, -hdd, you can use:

qemu-system-x86_64 -drive file=file,index=0,media=disk
qemu-system-x86_64 -drive file=file,index=1,media=disk
qemu-system-x86_64 -drive file=file,index=2,media=disk
qemu-system-x86_64 -drive file=file,index=3,media=disk

You can open an image using pre-opened file descriptors from an fd
set:

qemu-system-x86_64 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" -drive file=/dev/fdset/2,index=0,media=disk

You can connect a CDROM to the slave of ide0:

qemu_system-x86_64 -drive file=file,if=ide,index=1,media=cdrom

If you don’t specify the “file=” argument, you define an empty
drive:

qemu_system-x86_64 -drive if=ide,index=1,media=cdrom

Instead of -fda, -fdb, you can use:

qemu_system-x86_64 -drive file=file,index=0,if=floppy
qemu_system-x86_64 -drive file=file,index=1,if=floppy

By default, interface is “ide” and index is automatically
incremented:

qemu_system-x86_64 -drive file=a -drive file=b"

is interpreted like:

qemu_system-x86_64 -hda a -hdb b

	-mtdblock file

	Use file as on-board Flash memory image.

	-sd file

	Use file as SecureDigital card image.

	-pflash file

	Use file as a parallel flash image.

	-snapshot

	Write to temporary files instead of disk image files. In this case,
the raw disk image you use is not written back. You can however
force the write back by pressing C-a s (see
Disk Images).

	-fsdev local,id=id,path=path,security_model=security_model [,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode] [,throttling.option=value[,throttling.option=value[,...]]]

	

	-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly]

	

	-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]

	

	-fsdev synth,id=id[,readonly]

	Define a new file system device. Valid options are:

	local

	Accesses to the filesystem are done by QEMU.

	proxy

	Accesses to the filesystem are done by virtfs-proxy-helper(1).

	synth

	Synthetic filesystem, only used by QTests.

	id=id

	Specifies identifier for this device.

	path=path

	Specifies the export path for the file system device. Files
under this path will be available to the 9p client on the guest.

	security_model=security_model

	Specifies the security model to be used for this export path.
Supported security models are “passthrough”, “mapped-xattr”,
“mapped-file” and “none”. In “passthrough” security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In “mapped-xattr”
security model, some of the file attributes like uid, gid, mode
bits and link target are stored as file attributes. For
“mapped-file” these attributes are stored in the hidden
.virtfs_metadata directory. Directories exported by this
security model cannot interact with other unix tools. “none”
security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver.
Other fsdrivers (like proxy) don’t take security model as a
parameter.

	writeout=writeout

	This is an optional argument. The only supported value is
“immediate”. This means that host page cache will be used to
read and write data but write notification will be sent to the
guest only when the data has been reported as written by the
storage subsystem.

	readonly

	Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

	socket=socket

	Enables proxy filesystem driver to use passed socket file for
communicating with virtfs-proxy-helper(1).

	sock_fd=sock_fd

	Enables proxy filesystem driver to use passed socket descriptor
for communicating with virtfs-proxy-helper(1). Usually a helper
like libvirt will create socketpair and pass one of the fds as
sock_fd.

	fmode=fmode

	Specifies the default mode for newly created files on the host.
Works only with security models “mapped-xattr” and
“mapped-file”.

	dmode=dmode

	Specifies the default mode for newly created directories on the
host. Works only with security models “mapped-xattr” and
“mapped-file”.

	throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w

	Specify bandwidth throttling limits in bytes per second, either
for all request types or for reads or writes only.

	throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm

	Specify bursts in bytes per second, either for all request types
or for reads or writes only. Bursts allow the guest I/O to spike
above the limit temporarily.

	throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w

	Specify request rate limits in requests per second, either for
all request types or for reads or writes only.

	throttling.iops-total-max=im,throttling.iops-read-max=irm, throttling.iops-write-max=iwm

	Specify bursts in requests per second, either for all request
types or for reads or writes only. Bursts allow the guest I/O to
spike above the limit temporarily.

	throttling.iops-size=is

	Let every is bytes of a request count as a new request for iops
throttling purposes.

-fsdev option is used along with -device driver “virtio-9p-…”.

	-device virtio-9p-type,fsdev=id,mount_tag=mount_tag

	Options for virtio-9p-… driver are:

	type

	Specifies the variant to be used. Supported values are “pci”,
“ccw” or “device”, depending on the machine type.

	fsdev=id

	Specifies the id value specified along with -fsdev option.

	mount_tag=mount_tag

	Specifies the tag name to be used by the guest to mount this
export point.

	-virtfs local,path=path,mount_tag=mount_tag ,security_model=security_model[,writeout=writeout][,readonly] [,fmode=fmode][,dmode=dmode][,multidevs=multidevs]

	

	-virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly]

	

	-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly]

	

	-virtfs synth,mount_tag=mount_tag

	Define a new filesystem device and expose it to the guest using a
virtio-9p-device. The general form of a Virtual File system
pass-through options are:

	local

	Accesses to the filesystem are done by QEMU.

	proxy

	Accesses to the filesystem are done by virtfs-proxy-helper(1).

	synth

	Synthetic filesystem, only used by QTests.

	id=id

	Specifies identifier for the filesystem device

	path=path

	Specifies the export path for the file system device. Files
under this path will be available to the 9p client on the guest.

	security_model=security_model

	Specifies the security model to be used for this export path.
Supported security models are “passthrough”, “mapped-xattr”,
“mapped-file” and “none”. In “passthrough” security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In “mapped-xattr”
security model, some of the file attributes like uid, gid, mode
bits and link target are stored as file attributes. For
“mapped-file” these attributes are stored in the hidden
.virtfs_metadata directory. Directories exported by this
security model cannot interact with other unix tools. “none”
security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver.
Other fsdrivers (like proxy) don’t take security model as a
parameter.

	writeout=writeout

	This is an optional argument. The only supported value is
“immediate”. This means that host page cache will be used to
read and write data but write notification will be sent to the
guest only when the data has been reported as written by the
storage subsystem.

	readonly

	Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

	socket=socket

	Enables proxy filesystem driver to use passed socket file for
communicating with virtfs-proxy-helper(1). Usually a helper like
libvirt will create socketpair and pass one of the fds as
sock_fd.

	sock_fd

	Enables proxy filesystem driver to use passed ‘sock_fd’ as the
socket descriptor for interfacing with virtfs-proxy-helper(1).

	fmode=fmode

	Specifies the default mode for newly created files on the host.
Works only with security models “mapped-xattr” and
“mapped-file”.

	dmode=dmode

	Specifies the default mode for newly created directories on the
host. Works only with security models “mapped-xattr” and
“mapped-file”.

	mount_tag=mount_tag

	Specifies the tag name to be used by the guest to mount this
export point.

	multidevs=multidevs

	Specifies how to deal with multiple devices being shared with a
9p export. Supported behaviours are either “remap”, “forbid” or
“warn”. The latter is the default behaviour on which virtfs 9p
expects only one device to be shared with the same export, and
if more than one device is shared and accessed via the same 9p
export then only a warning message is logged (once) by qemu on
host side. In order to avoid file ID collisions on guest you
should either create a separate virtfs export for each device to
be shared with guests (recommended way) or you might use “remap”
instead which allows you to share multiple devices with only one
export instead, which is achieved by remapping the original
inode numbers from host to guest in a way that would prevent
such collisions. Remapping inodes in such use cases is required
because the original device IDs from host are never passed and
exposed on guest. Instead all files of an export shared with
virtfs always share the same device id on guest. So two files
with identical inode numbers but from actually different devices
on host would otherwise cause a file ID collision and hence
potential misbehaviours on guest. “forbid” on the other hand
assumes like “warn” that only one device is shared by the same
export, however it will not only log a warning message but also
deny access to additional devices on guest. Note though that
“forbid” does currently not block all possible file access
operations (e.g. readdir() would still return entries from other
devices).

	-iscsi

	Configure iSCSI session parameters.

USB options

	-usb

	Enable USB emulation on machine types with an on-board USB host
controller (if not enabled by default). Note that on-board USB host
controllers may not support USB 3.0. In this case
-device qemu-xhci can be used instead on machines with PCI.

	-usbdevice devname

	Add the USB device devname. Note that this option is deprecated,
please use -device usb-... instead. See
Connecting USB devices.

	mouse

	Virtual Mouse. This will override the PS/2 mouse emulation when
activated.

	tablet

	Pointer device that uses absolute coordinates (like a
touchscreen). This means QEMU is able to report the mouse
position without having to grab the mouse. Also overrides the
PS/2 mouse emulation when activated.

	braille

	Braille device. This will use BrlAPI to display the braille
output on a real or fake device.

Display options

	-display type

	Select type of display to use. This option is a replacement for the
old style -sdl/-curses/… options. Use -display help to list
the available display types. Valid values for type are

	sdl

	Display video output via SDL (usually in a separate graphics
window; see the SDL documentation for other possibilities).

	curses

	Display video output via curses. For graphics device models
which support a text mode, QEMU can display this output using a
curses/ncurses interface. Nothing is displayed when the graphics
device is in graphical mode or if the graphics device does not
support a text mode. Generally only the VGA device models
support text mode. The font charset used by the guest can be
specified with the charset option, for example
charset=CP850 for IBM CP850 encoding. The default is
CP437.

	none

	Do not display video output. The guest will still see an
emulated graphics card, but its output will not be displayed to
the QEMU user. This option differs from the -nographic option in
that it only affects what is done with video output; -nographic
also changes the destination of the serial and parallel port
data.

	gtk

	Display video output in a GTK window. This interface provides
drop-down menus and other UI elements to configure and control
the VM during runtime.

	vnc

	Start a VNC server on display <arg>

	egl-headless

	Offload all OpenGL operations to a local DRI device. For any
graphical display, this display needs to be paired with either
VNC or SPICE displays.

	spice-app

	Start QEMU as a Spice server and launch the default Spice client
application. The Spice server will redirect the serial consoles
and QEMU monitors. (Since 4.0)

	-nographic

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, you can totally disable
graphical output so that QEMU is a simple command line application.
The emulated serial port is redirected on the console and muxed with
the monitor (unless redirected elsewhere explicitly). Therefore, you
can still use QEMU to debug a Linux kernel with a serial console.
Use C-a h for help on switching between the console and monitor.

	-curses

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, QEMU can display the VGA
output when in text mode using a curses/ncurses interface. Nothing
is displayed in graphical mode.

	-alt-grab

	Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that
this also affects the special keys (for fullscreen, monitor-mode
switching, etc).

	-ctrl-grab

	Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this
also affects the special keys (for fullscreen, monitor-mode
switching, etc).

	-no-quit

	Disable SDL window close capability.

	-sdl

	Enable SDL.

	-spice option[,option[,...]]

	Enable the spice remote desktop protocol. Valid options are

	port=<nr>

	Set the TCP port spice is listening on for plaintext channels.

	addr=<addr>

	Set the IP address spice is listening on. Default is any
address.

	ipv4; ipv6; unix

	Force using the specified IP version.

	password=<secret>

	Set the password you need to authenticate.

	sasl

	Require that the client use SASL to authenticate with the spice.
The exact choice of authentication method used is controlled
from the system / user’s SASL configuration file for the ‘qemu’
service. This is typically found in /etc/sasl2/qemu.conf. If
running QEMU as an unprivileged user, an environment variable
SASL_CONF_PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods
can also provide data encryption (eg GSSAPI), it is recommended
that SASL always be combined with the ‘tls’ and ‘x509’ settings
to enable use of SSL and server certificates. This ensures a
data encryption preventing compromise of authentication
credentials.

	disable-ticketing

	Allow client connects without authentication.

	disable-copy-paste

	Disable copy paste between the client and the guest.

	disable-agent-file-xfer

	Disable spice-vdagent based file-xfer between the client and the
guest.

	tls-port=<nr>

	Set the TCP port spice is listening on for encrypted channels.

	x509-dir=<dir>

	Set the x509 file directory. Expects same filenames as -vnc
$display,x509=$dir

	x509-key-file=<file>; x509-key-password=<file>; x509-cert-file=<file>; x509-cacert-file=<file>; x509-dh-key-file=<file>

	The x509 file names can also be configured individually.

	tls-ciphers=<list>

	Specify which ciphers to use.

	tls-channel=[main|display|cursor|inputs|record|playback]; plaintext-channel=[main|display|cursor|inputs|record|playback]

	Force specific channel to be used with or without TLS
encryption. The options can be specified multiple times to
configure multiple channels. The special name “default” can be
used to set the default mode. For channels which are not
explicitly forced into one mode the spice client is allowed to
pick tls/plaintext as he pleases.

	image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

	Configure image compression (lossless). Default is auto_glz.

	jpeg-wan-compression=[auto|never|always]; zlib-glz-wan-compression=[auto|never|always]

	Configure wan image compression (lossy for slow links). Default
is auto.

	streaming-video=[off|all|filter]

	Configure video stream detection. Default is off.

	agent-mouse=[on|off]

	Enable/disable passing mouse events via vdagent. Default is on.

	playback-compression=[on|off]

	Enable/disable audio stream compression (using celt 0.5.1).
Default is on.

	seamless-migration=[on|off]

	Enable/disable spice seamless migration. Default is off.

	gl=[on|off]

	Enable/disable OpenGL context. Default is off.

	rendernode=<file>

	DRM render node for OpenGL rendering. If not specified, it will
pick the first available. (Since 2.9)

	-portrait

	Rotate graphical output 90 deg left (only PXA LCD).

	-rotate deg

	Rotate graphical output some deg left (only PXA LCD).

	-vga type

	Select type of VGA card to emulate. Valid values for type are

	cirrus

	Cirrus Logic GD5446 Video card. All Windows versions starting
from Windows 95 should recognize and use this graphic card. For
optimal performances, use 16 bit color depth in the guest and
the host OS. (This card was the default before QEMU 2.2)

	std

	Standard VGA card with Bochs VBE extensions. If your guest OS
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
you want to use high resolution modes (>= 1280x1024x16) then you
should use this option. (This card is the default since QEMU
2.2)

	vmware

	VMWare SVGA-II compatible adapter. Use it if you have
sufficiently recent XFree86/XOrg server or Windows guest with a
driver for this card.

	qxl

	QXL paravirtual graphic card. It is VGA compatible (including
VESA 2.0 VBE support). Works best with qxl guest drivers
installed though. Recommended choice when using the spice
protocol.

	tcx

	(sun4m only) Sun TCX framebuffer. This is the default
framebuffer for sun4m machines and offers both 8-bit and 24-bit
colour depths at a fixed resolution of 1024x768.

	cg3

	(sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
framebuffer for sun4m machines available in both 1024x768
(OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
wishing to run older Solaris versions.

	virtio

	Virtio VGA card.

	none

	Disable VGA card.

	-full-screen

	Start in full screen.

	-g widthxheight[xdepth]

	Set the initial graphical resolution and depth (PPC, SPARC only).

For PPC the default is 800x600x32.

For SPARC with the TCX graphics device, the default is 1024x768x8
with the option of 1024x768x24. For cgthree, the default is
1024x768x8 with the option of 1152x900x8 for people who wish to use
OBP.

	-vnc display[,option[,option[,...]]]

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, you can have QEMU listen on
VNC display display and redirect the VGA display over the VNC
session. It is very useful to enable the usb tablet device when
using this option (option -device usb-tablet). When using the
VNC display, you must use the -k parameter to set the keyboard
layout if you are not using en-us. Valid syntax for the display is

	to=L

	With this option, QEMU will try next available VNC displays,
until the number L, if the origianlly defined “-vnc display” is
not available, e.g. port 5900+display is already used by another
application. By default, to=0.

	host:d

	TCP connections will only be allowed from host on display d. By
convention the TCP port is 5900+d. Optionally, host can be
omitted in which case the server will accept connections from
any host.

	unix:path

	Connections will be allowed over UNIX domain sockets where path
is the location of a unix socket to listen for connections on.

	none

	VNC is initialized but not started. The monitor change
command can be used to later start the VNC server.

Following the display value there may be one or more option flags
separated by commas. Valid options are

	reverse

	Connect to a listening VNC client via a “reverse” connection.
The client is specified by the display. For reverse network
connections (host:d,``reverse``), the d argument is a TCP port
number, not a display number.

	websocket

	Opens an additional TCP listening port dedicated to VNC
Websocket connections. If a bare websocket option is given, the
Websocket port is 5700+display. An alternative port can be
specified with the syntax websocket=port.

If host is specified connections will only be allowed from this
host. It is possible to control the websocket listen address
independently, using the syntax websocket=host:port.

If no TLS credentials are provided, the websocket connection
runs in unencrypted mode. If TLS credentials are provided, the
websocket connection requires encrypted client connections.

	password

	Require that password based authentication is used for client
connections.

The password must be set separately using the set_password
command in the QEMU Monitor. The
syntax to change your password is:
set_password <protocol> <password> where <protocol> could be
either “vnc” or “spice”.

If you would like to change <protocol> password expiration, you
should use expire_password <protocol> <expiration-time>
where expiration time could be one of the following options:
now, never, +seconds or UNIX time of expiration, e.g. +60 to
make password expire in 60 seconds, or 1335196800 to make
password expire on “Mon Apr 23 12:00:00 EDT 2012” (UNIX time for
this date and time).

You can also use keywords “now” or “never” for the expiration
time to allow <protocol> password to expire immediately or never
expire.

	tls-creds=ID

	Provides the ID of a set of TLS credentials to use to secure the
VNC server. They will apply to both the normal VNC server socket
and the websocket socket (if enabled). Setting TLS credentials
will cause the VNC server socket to enable the VeNCrypt auth
mechanism. The credentials should have been previously created
using the -object tls-creds argument.

	tls-authz=ID

	Provides the ID of the QAuthZ authorization object against which
the client’s x509 distinguished name will validated. This object
is only resolved at time of use, so can be deleted and recreated
on the fly while the VNC server is active. If missing, it will
default to denying access.

	sasl

	Require that the client use SASL to authenticate with the VNC
server. The exact choice of authentication method used is
controlled from the system / user’s SASL configuration file for
the ‘qemu’ service. This is typically found in
/etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
an environment variable SASL_CONF_PATH can be used to make it
search alternate locations for the service config. While some
SASL auth methods can also provide data encryption (eg GSSAPI),
it is recommended that SASL always be combined with the ‘tls’
and ‘x509’ settings to enable use of SSL and server
certificates. This ensures a data encryption preventing
compromise of authentication credentials. See the
VNC security section for details on
using SASL authentication.

	sasl-authz=ID

	Provides the ID of the QAuthZ authorization object against which
the client’s SASL username will validated. This object is only
resolved at time of use, so can be deleted and recreated on the
fly while the VNC server is active. If missing, it will default
to denying access.

	acl

	Legacy method for enabling authorization of clients against the
x509 distinguished name and SASL username. It results in the
creation of two authz-list objects with IDs of
vnc.username and vnc.x509dname. The rules for these
objects must be configured with the HMP ACL commands.

This option is deprecated and should no longer be used. The new
sasl-authz and tls-authz options are a replacement.

	lossy

	Enable lossy compression methods (gradient, JPEG, …). If this
option is set, VNC client may receive lossy framebuffer updates
depending on its encoding settings. Enabling this option can
save a lot of bandwidth at the expense of quality.

	non-adaptive

	Disable adaptive encodings. Adaptive encodings are enabled by
default. An adaptive encoding will try to detect frequently
updated screen regions, and send updates in these regions using
a lossy encoding (like JPEG). This can be really helpful to save
bandwidth when playing videos. Disabling adaptive encodings
restores the original static behavior of encodings like Tight.

	share=[allow-exclusive|force-shared|ignore]

	Set display sharing policy. ‘allow-exclusive’ allows clients to
ask for exclusive access. As suggested by the rfb spec this is
implemented by dropping other connections. Connecting multiple
clients in parallel requires all clients asking for a shared
session (vncviewer: -shared switch). This is the default.
‘force-shared’ disables exclusive client access. Useful for
shared desktop sessions, where you don’t want someone forgetting
specify -shared disconnect everybody else. ‘ignore’ completely
ignores the shared flag and allows everybody connect
unconditionally. Doesn’t conform to the rfb spec but is
traditional QEMU behavior.

	key-delay-ms

	Set keyboard delay, for key down and key up events, in
milliseconds. Default is 10. Keyboards are low-bandwidth
devices, so this slowdown can help the device and guest to keep
up and not lose events in case events are arriving in bulk.
Possible causes for the latter are flaky network connections, or
scripts for automated testing.

	audiodev=audiodev

	Use the specified audiodev when the VNC client requests audio
transmission. When not using an -audiodev argument, this option
must be omitted, otherwise is must be present and specify a
valid audiodev.

i386 target only

	-win2k-hack

	Use it when installing Windows 2000 to avoid a disk full bug. After
Windows 2000 is installed, you no longer need this option (this
option slows down the IDE transfers).

	-no-fd-bootchk

	Disable boot signature checking for floppy disks in BIOS. May be
needed to boot from old floppy disks.

	-no-acpi

	Disable ACPI (Advanced Configuration and Power Interface) support.
Use it if your guest OS complains about ACPI problems (PC target
machine only).

	-no-hpet

	Disable HPET support.

	-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n] [,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

	Add ACPI table with specified header fields and context from
specified files. For file=, take whole ACPI table from the specified
files, including all ACPI headers (possible overridden by other
options). For data=, only data portion of the table is used, all
header information is specified in the command line. If a SLIC table
is supplied to QEMU, then the SLIC’s oem_id and oem_table_id
fields will override the same in the RSDT and the FADT (a.k.a.
FACP), in order to ensure the field matches required by the
Microsoft SLIC spec and the ACPI spec.

	-smbios file=binary

	Load SMBIOS entry from binary file.

	-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]

	Specify SMBIOS type 0 fields

	-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

	Specify SMBIOS type 1 fields

	-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]

	Specify SMBIOS type 2 fields

	-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]

	Specify SMBIOS type 3 fields

	-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]

	Specify SMBIOS type 4 fields

	-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

	Specify SMBIOS type 17 fields

Network options

	-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]

	This option is a shortcut for configuring both the on-board
(default) guest NIC hardware and the host network backend in one go.
The host backend options are the same as with the corresponding
-netdev options below. The guest NIC model can be set with
model=modelname. Use model=help to list the available device
types. The hardware MAC address can be set with mac=macaddr.

The following two example do exactly the same, to show how -nic
can be used to shorten the command line length:

qemu-system-x86_64 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
qemu-system-x86_64 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32

	-nic none

	Indicate that no network devices should be configured. It is used to
override the default configuration (default NIC with “user” host
network backend) which is activated if no other networking options
are provided.

	-netdev user,id=id[,option][,option][,...]

	Configure user mode host network backend which requires no
administrator privilege to run. Valid options are:

	id=id

	Assign symbolic name for use in monitor commands.

	ipv4=on|off and ipv6=on|off

	Specify that either IPv4 or IPv6 must be enabled. If neither is
specified both protocols are enabled.

	net=addr[/mask]

	Set IP network address the guest will see. Optionally specify
the netmask, either in the form a.b.c.d or as number of valid
top-most bits. Default is 10.0.2.0/24.

	host=addr

	Specify the guest-visible address of the host. Default is the
2nd IP in the guest network, i.e. x.x.x.2.

	ipv6-net=addr[/int]

	Set IPv6 network address the guest will see (default is
fec0::/64). The network prefix is given in the usual hexadecimal
IPv6 address notation. The prefix size is optional, and is given
as the number of valid top-most bits (default is 64).

	ipv6-host=addr

	Specify the guest-visible IPv6 address of the host. Default is
the 2nd IPv6 in the guest network, i.e. xxxx::2.

	restrict=on|off

	If this option is enabled, the guest will be isolated, i.e. it
will not be able to contact the host and no guest IP packets
will be routed over the host to the outside. This option does
not affect any explicitly set forwarding rules.

	hostname=name

	Specifies the client hostname reported by the built-in DHCP
server.

	dhcpstart=addr

	Specify the first of the 16 IPs the built-in DHCP server can
assign. Default is the 15th to 31st IP in the guest network,
i.e. x.x.x.15 to x.x.x.31.

	dns=addr

	Specify the guest-visible address of the virtual nameserver. The
address must be different from the host address. Default is the
3rd IP in the guest network, i.e. x.x.x.3.

	ipv6-dns=addr

	Specify the guest-visible address of the IPv6 virtual
nameserver. The address must be different from the host address.
Default is the 3rd IP in the guest network, i.e. xxxx::3.

	dnssearch=domain

	Provides an entry for the domain-search list sent by the
built-in DHCP server. More than one domain suffix can be
transmitted by specifying this option multiple times. If
supported, this will cause the guest to automatically try to
append the given domain suffix(es) in case a domain name can not
be resolved.

Example:

qemu-system-x86_64 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org

	domainname=domain

	Specifies the client domain name reported by the built-in DHCP
server.

	tftp=dir

	When using the user mode network stack, activate a built-in TFTP
server. The files in dir will be exposed as the root of a TFTP
server. The TFTP client on the guest must be configured in
binary mode (use the command bin of the Unix TFTP client).

	tftp-server-name=name

	In BOOTP reply, broadcast name as the “TFTP server name”
(RFC2132 option 66). This can be used to advise the guest to
load boot files or configurations from a different server than
the host address.

	bootfile=file

	When using the user mode network stack, broadcast file as the
BOOTP filename. In conjunction with tftp, this can be used
to network boot a guest from a local directory.

Example (using pxelinux):

qemu-system-x86_64 -hda linux.img -boot n -device e1000,netdev=n1 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

	smb=dir[,smbserver=addr]

	When using the user mode network stack, activate a built-in SMB
server so that Windows OSes can access to the host files in
dir transparently. The IP address of the SMB server can be
set to addr. By default the 4th IP in the guest network is used,
i.e. x.x.x.4.

In the guest Windows OS, the line:

10.0.2.4 smbserver

must be added in the file C:\WINDOWS\LMHOSTS (for windows
9x/Me) or C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows
NT/2000).

Then dir can be accessed in \\smbserver\qemu.

Note that a SAMBA server must be installed on the host OS.

	hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

	Redirect incoming TCP or UDP connections to the host port
hostport to the guest IP address guestaddr on guest port
guestport. If guestaddr is not specified, its value is x.x.x.15
(default first address given by the built-in DHCP server). By
specifying hostaddr, the rule can be bound to a specific host
interface. If no connection type is set, TCP is used. This
option can be given multiple times.

For example, to redirect host X11 connection from screen 1 to
guest screen 0, use the following:

on the host
qemu-system-x86_64 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
this host xterm should open in the guest X11 server
xterm -display :1

To redirect telnet connections from host port 5555 to telnet
port on the guest, use the following:

on the host
qemu-system-x86_64 -nic user,hostfwd=tcp::5555-:23
telnet localhost 5555

Then when you use on the host telnet localhost 5555, you
connect to the guest telnet server.

	guestfwd=[tcp]:server:port-dev; guestfwd=[tcp]:server:port-cmd:command

	Forward guest TCP connections to the IP address server on port
port to the character device dev or to a program executed by
cmd:command which gets spawned for each connection. This option
can be given multiple times.

You can either use a chardev directly and have that one used
throughout QEMU’s lifetime, like in the following example:

open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
the guest accesses it
qemu-system-x86_64 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321

Or you can execute a command on every TCP connection established
by the guest, so that QEMU behaves similar to an inetd process
for that virtual server:

call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
and connect the TCP stream to its stdin/stdout
qemu-system-x86_64 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'

	-netdev tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]

	Configure a host TAP network backend with ID id.

Use the network script file to configure it and the network script
dfile to deconfigure it. If name is not provided, the OS
automatically provides one. The default network configure script is
/etc/qemu-ifup and the default network deconfigure script is
/etc/qemu-ifdown. Use script=no or downscript=no to
disable script execution.

If running QEMU as an unprivileged user, use the network helper
helper to configure the TAP interface and attach it to the bridge.
The default network helper executable is
/path/to/qemu-bridge-helper and the default bridge device is
br0.

fd=h can be used to specify the handle of an already opened
host TAP interface.

Examples:

#launch a QEMU instance with the default network script
qemu-system-x86_64 linux.img -nic tap

#launch a QEMU instance with two NICs, each one connected
#to a TAP device
qemu-system-x86_64 linux.img -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-x86_64 linux.img -device virtio-net-pci,netdev=n1 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"

	-netdev bridge,id=id[,br=bridge][,helper=helper]

	Connect a host TAP network interface to a host bridge device.

Use the network helper helper to configure the TAP interface and
attach it to the bridge. The default network helper executable is
/path/to/qemu-bridge-helper and the default bridge device is
br0.

Examples:

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-x86_64 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge qemubr0
qemu-system-x86_64 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1

	-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]

	This host network backend can be used to connect the guest’s network
to another QEMU virtual machine using a TCP socket connection. If
listen is specified, QEMU waits for incoming connections on port
(host is optional). connect is used to connect to another QEMU
instance using the listen option. fd=h specifies an
already opened TCP socket.

Example:

launch a first QEMU instance
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,listen=:1234
connect the network of this instance to the network of the first instance
qemu-system-x86_64 linux.img -device e1000,netdev=n2,mac=52:54:00:12:34:57 -netdev socket,id=n2,connect=127.0.0.1:1234

	-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]

	Configure a socket host network backend to share the guest’s network
traffic with another QEMU virtual machines using a UDP multicast
socket, effectively making a bus for every QEMU with same multicast
address maddr and port. NOTES:

	Several QEMU can be running on different hosts and share same bus
(assuming correct multicast setup for these hosts).

	mcast support is compatible with User Mode Linux (argument
ethN=mcast), see http://user-mode-linux.sf.net.

	Use fd=h to specify an already opened UDP multicast socket.

Example:

launch one QEMU instance
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=230.0.0.1:1234
launch another QEMU instance on same "bus"
qemu-system-x86_64 linux.img -device e1000,netdev=n2,mac=52:54:00:12:34:57 -netdev socket,id=n2,mcast=230.0.0.1:1234
launch yet another QEMU instance on same "bus"
qemu-system-x86_64 linux.img -device e1000,netdev=n3,mac=52:54:00:12:34:58 -netdev socket,id=n3,mcast=230.0.0.1:1234

Example (User Mode Linux compat.):

launch QEMU instance (note mcast address selected is UML's default)
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=239.192.168.1:1102
launch UML
/path/to/linux ubd0=/path/to/root_fs eth0=mcast

Example (send packets from host’s 1.2.3.4):

qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

	-netdev l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

	Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391)
is a popular protocol to transport Ethernet (and other Layer 2) data
frames between two systems. It is present in routers, firewalls and
the Linux kernel (from version 3.3 onwards).

This transport allows a VM to communicate to another VM, router or
firewall directly.

	src=srcaddr

	source address (mandatory)

	dst=dstaddr

	destination address (mandatory)

	udp

	select udp encapsulation (default is ip).

	srcport=srcport

	source udp port.

	dstport=dstport

	destination udp port.

	ipv6

	force v6, otherwise defaults to v4.

	rxcookie=rxcookie; txcookie=txcookie

	Cookies are a weak form of security in the l2tpv3 specification.
Their function is mostly to prevent misconfiguration. By default
they are 32 bit.

	cookie64

	Set cookie size to 64 bit instead of the default 32

	counter=off

	Force a ‘cut-down’ L2TPv3 with no counter as in
draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00

	pincounter=on

	Work around broken counter handling in peer. This may also help
on networks which have packet reorder.

	offset=offset

	Add an extra offset between header and data

For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to
the bridge br-lan on the remote Linux host 1.2.3.4:

Setup tunnel on linux host using raw ip as encapsulation
on 1.2.3.4
ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 encap udp udp_sport 16384 udp_dport 16384
ip l2tp add session tunnel_id 1 name vmtunnel0 session_id 0xFFFFFFFF peer_session_id 0xFFFFFFFF
ifconfig vmtunnel0 mtu 1500
ifconfig vmtunnel0 up
brctl addif br-lan vmtunnel0

on 4.3.2.1
launch QEMU instance - if your network has reorder or is very lossy add ,pincounter

qemu-system-x86_64 linux.img -device e1000,netdev=n1 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter

	-netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]

	Configure VDE backend to connect to PORT n of a vde switch running
on host and listening for incoming connections on socketpath. Use
GROUP groupname and MODE octalmode to change default ownership and
permissions for communication port. This option is only available if
QEMU has been compiled with vde support enabled.

Example:

launch vde switch
vde_switch -F -sock /tmp/myswitch
launch QEMU instance
qemu-system-x86_64 linux.img -nic vde,sock=/tmp/myswitch

	-netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]

	Establish a vhost-user netdev, backed by a chardev id. The chardev
should be a unix domain socket backed one. The vhost-user uses a
specifically defined protocol to pass vhost ioctl replacement
messages to an application on the other end of the socket. On
non-MSIX guests, the feature can be forced with vhostforce. Use
‘queues=n’ to specify the number of queues to be created for
multiqueue vhost-user.

Example:

qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
 -numa node,memdev=mem \
 -chardev socket,id=chr0,path=/path/to/socket \
 -netdev type=vhost-user,id=net0,chardev=chr0 \
 -device virtio-net-pci,netdev=net0

	-netdev hubport,id=id,hubid=hubid[,netdev=nd]

	Create a hub port on the emulated hub with ID hubid.

The hubport netdev lets you connect a NIC to a QEMU emulated hub
instead of a single netdev. Alternatively, you can also connect the
hubport to another netdev with ID nd by using the netdev=nd
option.

	-net nic[,netdev=nd][,macaddr=mac][,model=type] [,name=name][,addr=addr][,vectors=v]

	Legacy option to configure or create an on-board (or machine
default) Network Interface Card(NIC) and connect it either to the
emulated hub with ID 0 (i.e. the default hub), or to the netdev nd.
If model is omitted, then the default NIC model associated with the
machine type is used. Note that the default NIC model may change in
future QEMU releases, so it is highly recommended to always specify
a model. Optionally, the MAC address can be changed to mac, the
device address set to addr (PCI cards only), and a name can be
assigned for use in monitor commands. Optionally, for PCI cards, you
can specify the number v of MSI-X vectors that the card should have;
this option currently only affects virtio cards; set v = 0 to
disable MSI-X. If no -net option is specified, a single NIC is
created. QEMU can emulate several different models of network card.
Use -net nic,model=help for a list of available devices for your
target.

	-net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]

	Configure a host network backend (with the options corresponding to
the same -netdev option) and connect it to the emulated hub 0
(the default hub). Use name to specify the name of the hub port.

Character device options

The general form of a character device option is:

	-chardev backend,id=id[,mux=on|off][,options]

	Backend is one of: null, socket, udp, msmouse,
vc, ringbuf, file, pipe, console, serial,
pty, stdio, braille, tty, parallel, parport,
spicevmc, spiceport. The specific backend will determine the
applicable options.

Use -chardev help to print all available chardev backend types.

All devices must have an id, which can be any string up to 127
characters long. It is used to uniquely identify this device in
other command line directives.

A character device may be used in multiplexing mode by multiple
front-ends. Specify mux=on to enable this mode. A multiplexer is
a “1:N” device, and here the “1” end is your specified chardev
backend, and the “N” end is the various parts of QEMU that can talk
to a chardev. If you create a chardev with id=myid and
mux=on, QEMU will create a multiplexer with your specified ID,
and you can then configure multiple front ends to use that chardev
ID for their input/output. Up to four different front ends can be
connected to a single multiplexed chardev. (Without multiplexing
enabled, a chardev can only be used by a single front end.) For
instance you could use this to allow a single stdio chardev to be
used by two serial ports and the QEMU monitor:

-chardev stdio,mux=on,id=char0 \
-mon chardev=char0,mode=readline \
-serial chardev:char0 \
-serial chardev:char0

You can have more than one multiplexer in a system configuration;
for instance you could have a TCP port multiplexed between UART 0
and UART 1, and stdio multiplexed between the QEMU monitor and a
parallel port:

-chardev stdio,mux=on,id=char0 \
-mon chardev=char0,mode=readline \
-parallel chardev:char0 \
-chardev tcp,...,mux=on,id=char1 \
-serial chardev:char1 \
-serial chardev:char1

When you’re using a multiplexed character device, some escape
sequences are interpreted in the input. See Keys in the character backend multiplexer.

Note that some other command line options may implicitly create
multiplexed character backends; for instance -serial mon:stdio
creates a multiplexed stdio backend connected to the serial port and
the QEMU monitor, and -nographic also multiplexes the console
and the monitor to stdio.

There is currently no support for multiplexing in the other
direction (where a single QEMU front end takes input and output from
multiple chardevs).

Every backend supports the logfile option, which supplies the
path to a file to record all data transmitted via the backend. The
logappend option controls whether the log file will be truncated
or appended to when opened.

The available backends are:

	-chardev null,id=id

	A void device. This device will not emit any data, and will drop any
data it receives. The null backend does not take any options.

	-chardev socket,id=id[,TCP options or unix options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]

	Create a two-way stream socket, which can be either a TCP or a unix
socket. A unix socket will be created if path is specified.
Behaviour is undefined if TCP options are specified for a unix
socket.

server specifies that the socket shall be a listening socket.

nowait specifies that QEMU should not block waiting for a client
to connect to a listening socket.

telnet specifies that traffic on the socket should interpret
telnet escape sequences.

websocket specifies that the socket uses WebSocket protocol for
communication.

reconnect sets the timeout for reconnecting on non-server
sockets when the remote end goes away. qemu will delay this many
seconds and then attempt to reconnect. Zero disables reconnecting,
and is the default.

tls-creds requests enablement of the TLS protocol for
encryption, and specifies the id of the TLS credentials to use for
the handshake. The credentials must be previously created with the
-object tls-creds argument.

tls-auth provides the ID of the QAuthZ authorization object
against which the client’s x509 distinguished name will be
validated. This object is only resolved at time of use, so can be
deleted and recreated on the fly while the chardev server is active.
If missing, it will default to denying access.

TCP and unix socket options are given below:

	TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]

	host for a listening socket specifies the local address to
be bound. For a connecting socket species the remote host to
connect to. host is optional for listening sockets. If not
specified it defaults to 0.0.0.0.

port for a listening socket specifies the local port to be
bound. For a connecting socket specifies the port on the remote
host to connect to. port can be given as either a port
number or a service name. port is required.

to is only relevant to listening sockets. If it is
specified, and port cannot be bound, QEMU will attempt to
bind to subsequent ports up to and including to until it
succeeds. to must be specified as a port number.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be
used. If neither is specified the socket may use either
protocol.

nodelay disables the Nagle algorithm.

	unix options: path=path

	path specifies the local path of the unix socket. path
is required.

	-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]

	Sends all traffic from the guest to a remote host over UDP.

host specifies the remote host to connect to. If not specified
it defaults to localhost.

port specifies the port on the remote host to connect to.
port is required.

localaddr specifies the local address to bind to. If not
specified it defaults to 0.0.0.0.

localport specifies the local port to bind to. If not specified
any available local port will be used.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used.
If neither is specified the device may use either protocol.

	-chardev msmouse,id=id

	Forward QEMU’s emulated msmouse events to the guest. msmouse
does not take any options.

	-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]

	Connect to a QEMU text console. vc may optionally be given a
specific size.

width and height specify the width and height respectively
of the console, in pixels.

cols and rows specify that the console be sized to fit a
text console with the given dimensions.

	-chardev ringbuf,id=id[,size=size]

	Create a ring buffer with fixed size size. size must be a power
of two and defaults to 64K.

	-chardev file,id=id,path=path

	Log all traffic received from the guest to a file.

path specifies the path of the file to be opened. This file will
be created if it does not already exist, and overwritten if it does.
path is required.

	-chardev pipe,id=id,path=path

	Create a two-way connection to the guest. The behaviour differs
slightly between Windows hosts and other hosts:

On Windows, a single duplex pipe will be created at
\\.pipe\path.

On other hosts, 2 pipes will be created called path.in and
path.out. Data written to path.in will be received by the
guest. Data written by the guest can be read from path.out. QEMU
will not create these fifos, and requires them to be present.

path forms part of the pipe path as described above. path is
required.

	-chardev console,id=id

	Send traffic from the guest to QEMU’s standard output. console
does not take any options.

console is only available on Windows hosts.

	-chardev serial,id=id,path=path

	Send traffic from the guest to a serial device on the host.

On Unix hosts serial will actually accept any tty device, not only
serial lines.

path specifies the name of the serial device to open.

	-chardev pty,id=id

	Create a new pseudo-terminal on the host and connect to it. pty
does not take any options.

pty is not available on Windows hosts.

	-chardev stdio,id=id[,signal=on|off]

	Connect to standard input and standard output of the QEMU process.

signal controls if signals are enabled on the terminal, that
includes exiting QEMU with the key sequence Control-c. This option
is enabled by default, use signal=off to disable it.

	-chardev braille,id=id

	Connect to a local BrlAPI server. braille does not take any
options.

	-chardev tty,id=id,path=path

	tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD
and DragonFlyBSD hosts. It is an alias for serial.

path specifies the path to the tty. path is required.

	-chardev parallel,id=id,path=path

	

	-chardev parport,id=id,path=path

	parallel is only available on Linux, FreeBSD and DragonFlyBSD
hosts.

Connect to a local parallel port.

path specifies the path to the parallel port device. path is
required.

	-chardev spicevmc,id=id,debug=debug,name=name

	spicevmc is only available when spice support is built in.

debug debug level for spicevmc

name name of spice channel to connect to

Connect to a spice virtual machine channel, such as vdiport.

	-chardev spiceport,id=id,debug=debug,name=name

	spiceport is only available when spice support is built in.

debug debug level for spicevmc

name name of spice port to connect to

Connect to a spice port, allowing a Spice client to handle the
traffic identified by a name (preferably a fqdn).

TPM device options

The general form of a TPM device option is:

	-tpmdev backend,id=id[,options]

	The specific backend type will determine the applicable options. The
-tpmdev option creates the TPM backend and requires a
-device option that specifies the TPM frontend interface model.

Use -tpmdev help to print all available TPM backend types.

The available backends are:

	-tpmdev passthrough,id=id,path=path,cancel-path=cancel-path

	(Linux-host only) Enable access to the host’s TPM using the
passthrough driver.

path specifies the path to the host’s TPM device, i.e., on a
Linux host this would be /dev/tpm0. path is optional and by
default /dev/tpm0 is used.

cancel-path specifies the path to the host TPM device’s sysfs
entry allowing for cancellation of an ongoing TPM command.
cancel-path is optional and by default QEMU will search for the
sysfs entry to use.

Some notes about using the host’s TPM with the passthrough driver:

The TPM device accessed by the passthrough driver must not be used
by any other application on the host.

Since the host’s firmware (BIOS/UEFI) has already initialized the
TPM, the VM’s firmware (BIOS/UEFI) will not be able to initialize
the TPM again and may therefore not show a TPM-specific menu that
would otherwise allow the user to configure the TPM, e.g., allow the
user to enable/disable or activate/deactivate the TPM. Further, if
TPM ownership is released from within a VM then the host’s TPM will
get disabled and deactivated. To enable and activate the TPM again
afterwards, the host has to be rebooted and the user is required to
enter the firmware’s menu to enable and activate the TPM. If the TPM
is left disabled and/or deactivated most TPM commands will fail.

To create a passthrough TPM use the following two options:

-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0

Note that the -tpmdev id is tpm0 and is referenced by
tpmdev=tpm0 in the device option.

	-tpmdev emulator,id=id,chardev=dev

	(Linux-host only) Enable access to a TPM emulator using Unix domain
socket based chardev backend.

chardev specifies the unique ID of a character device backend
that provides connection to the software TPM server.

To create a TPM emulator backend device with chardev socket backend:

-chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0

Linux/Multiboot boot specific

When using these options, you can use a given Linux or Multiboot kernel
without installing it in the disk image. It can be useful for easier
testing of various kernels.

	-kernel bzImage

	Use bzImage as kernel image. The kernel can be either a Linux kernel
or in multiboot format.

	-append cmdline

	Use cmdline as kernel command line

	-initrd file

	Use file as initial ram disk.

	-initrd "file1 arg=foo,file2"

	This syntax is only available with multiboot.

Use file1 and file2 as modules and pass arg=foo as parameter to the
first module.

	-dtb file

	Use file as a device tree binary (dtb) image and pass it to the
kernel on boot.

Debug/Expert options

	-fw_cfg [name=]name,file=file

	Add named fw_cfg entry with contents from file file.

	-fw_cfg [name=]name,string=str

	Add named fw_cfg entry with contents from string str.

The terminating NUL character of the contents of str will not be
included as part of the fw_cfg item data. To insert contents with
embedded NUL characters, you have to use the file parameter.

The fw_cfg entries are passed by QEMU through to the guest.

Example:

-fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin

creates an fw_cfg entry named opt/com.mycompany/blob with contents
from ./my_blob.bin.

	-serial dev

	Redirect the virtual serial port to host character device dev. The
default device is vc in graphical mode and stdio in non
graphical mode.

This option can be used several times to simulate up to 4 serial
ports.

Use -serial none to disable all serial ports.

Available character devices are:

	vc[:WxH]

	Virtual console. Optionally, a width and height can be given in
pixel with

vc:800x600

It is also possible to specify width or height in characters:

vc:80Cx24C

	pty

	[Linux only] Pseudo TTY (a new PTY is automatically allocated)

	none

	No device is allocated.

	null

	void device

	chardev:id

	Use a named character device defined with the -chardev
option.

	/dev/XXX

	[Linux only] Use host tty, e.g. /dev/ttyS0. The host serial
port parameters are set according to the emulated ones.

	/dev/parportN

	[Linux only, parallel port only] Use host parallel port N.
Currently SPP and EPP parallel port features can be used.

	file:filename

	Write output to filename. No character can be read.

	stdio

	[Unix only] standard input/output

	pipe:filename

	name pipe filename

	COMn

	[Windows only] Use host serial port n

	udp:[remote_host]:remote_port[@[src_ip]:src_port]

	This implements UDP Net Console. When remote_host or src_ip
are not specified they default to 0.0.0.0. When not using a
specified src_port a random port is automatically chosen.

If you just want a simple readonly console you can use
netcat or nc, by starting QEMU with:
-serial udp::4555 and nc as: nc -u -l -p 4555. Any time
QEMU writes something to that port it will appear in the
netconsole session.

If you plan to send characters back via netconsole or you want
to stop and start QEMU a lot of times, you should have QEMU use
the same source port each time by using something like -serial
udp::4555@:4556 to QEMU. Another approach is to use a patched
version of netcat which can listen to a TCP port and send and
receive characters via udp. If you have a patched version of
netcat which activates telnet remote echo and single char
transfer, then you can use the following options to set up a
netcat redirector to allow telnet on port 5555 to access the
QEMU port.

	QEMU Options:

	-serial udp::4555@:4556

	netcat options:

	-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T

	telnet options:

	localhost 5555

	tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]

	The TCP Net Console has two modes of operation. It can send the
serial I/O to a location or wait for a connection from a
location. By default the TCP Net Console is sent to host at the
port. If you use the server option QEMU will wait for a client
socket application to connect to the port before continuing,
unless the nowait option was specified. The nodelay
option disables the Nagle buffering algorithm. The reconnect
option only applies if noserver is set, if the connection goes
down it will attempt to reconnect at the given interval. If host
is omitted, 0.0.0.0 is assumed. Only one TCP connection at a
time is accepted. You can use telnet to connect to the
corresponding character device.

	Example to send tcp console to 192.168.0.2 port 4444

	-serial tcp:192.168.0.2:4444

	Example to listen and wait on port 4444 for connection

	-serial tcp::4444,server

	Example to not wait and listen on ip 192.168.0.100 port 4444

	-serial tcp:192.168.0.100:4444,server,nowait

	telnet:host:port[,server][,nowait][,nodelay]

	The telnet protocol is used instead of raw tcp sockets. The
options work the same as if you had specified -serial tcp.
The difference is that the port acts like a telnet server or
client using telnet option negotiation. This will also allow you
to send the MAGIC_SYSRQ sequence if you use a telnet that
supports sending the break sequence. Typically in unix telnet
you do it with Control-] and then type “send break” followed by
pressing the enter key.

	websocket:host:port,server[,nowait][,nodelay]

	The WebSocket protocol is used instead of raw tcp socket. The
port acts as a WebSocket server. Client mode is not supported.

	unix:path[,server][,nowait][,reconnect=seconds]

	A unix domain socket is used instead of a tcp socket. The option
works the same as if you had specified -serial tcp except
the unix domain socket path is used for connections.

	mon:dev_string

	This is a special option to allow the monitor to be multiplexed
onto another serial port. The monitor is accessed with key
sequence of Control-a and then pressing c. dev_string should be
any one of the serial devices specified above. An example to
multiplex the monitor onto a telnet server listening on port
4444 would be:

-serial mon:telnet::4444,server,nowait

When the monitor is multiplexed to stdio in this way, Ctrl+C
will not terminate QEMU any more but will be passed to the guest
instead.

	braille

	Braille device. This will use BrlAPI to display the braille
output on a real or fake device.

	msmouse

	Three button serial mouse. Configure the guest to use Microsoft
protocol.

	-parallel dev

	Redirect the virtual parallel port to host device dev (same devices
as the serial port). On Linux hosts, /dev/parportN can be used
to use hardware devices connected on the corresponding host parallel
port.

This option can be used several times to simulate up to 3 parallel
ports.

Use -parallel none to disable all parallel ports.

	-monitor dev

	Redirect the monitor to host device dev (same devices as the serial
port). The default device is vc in graphical mode and stdio
in non graphical mode. Use -monitor none to disable the default
monitor.

	-qmp dev

	Like -monitor but opens in ‘control’ mode.

	-qmp-pretty dev

	Like -qmp but uses pretty JSON formatting.

	-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]

	Setup monitor on chardev name. pretty turns on JSON pretty
printing easing human reading and debugging.

	-debugcon dev

	Redirect the debug console to host device dev (same devices as the
serial port). The debug console is an I/O port which is typically
port 0xe9; writing to that I/O port sends output to this device. The
default device is vc in graphical mode and stdio in non
graphical mode.

	-pidfile file

	Store the QEMU process PID in file. It is useful if you launch QEMU
from a script.

	-singlestep

	Run the emulation in single step mode.

	--preconfig

	Pause QEMU for interactive configuration before the machine is
created, which allows querying and configuring properties that will
affect machine initialization. Use QMP command ‘x-exit-preconfig’ to
exit the preconfig state and move to the next state (i.e. run guest
if -S isn’t used or pause the second time if -S is used). This
option is experimental.

	-S

	Do not start CPU at startup (you must type ‘c’ in the monitor).

	-realtime mlock=on|off

	Run qemu with realtime features. mlocking qemu and guest memory can
be enabled via mlock=on (enabled by default).

	-overcommit mem-lock=on|off

	

	-overcommit cpu-pm=on|off

	Run qemu with hints about host resource overcommit. The default is
to assume that host overcommits all resources.

Locking qemu and guest memory can be enabled via mem-lock=on
(disabled by default). This works when host memory is not
overcommitted and reduces the worst-case latency for guest. This is
equivalent to realtime.

Guest ability to manage power state of host cpus (increasing latency
for other processes on the same host cpu, but decreasing latency for
guest) can be enabled via cpu-pm=on (disabled by default). This
works best when host CPU is not overcommitted. When used, host
estimates of CPU cycle and power utilization will be incorrect, not
taking into account guest idle time.

	-gdb dev

	Wait for gdb connection on device dev (see
GDB usage). Typical connections will likely be
TCP-based, but also UDP, pseudo TTY, or even stdio are reasonable
use case. The latter is allowing to start QEMU from within gdb and
establish the connection via a pipe:

(gdb) target remote | exec qemu-system-x86_64 -gdb stdio ...

	-s

	Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
(see GDB usage).

	-d item1[,...]

	Enable logging of specified items. Use ‘-d help’ for a list of log
items.

	-D logfile

	Output log in logfile instead of to stderr

	-dfilter range1[,...]

	Filter debug output to that relevant to a range of target addresses.
The filter spec can be either start+size, start-size or start..end
where start end and size are the addresses and sizes required. For
example:

-dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000

Will dump output for any code in the 0x1000 sized block starting at
0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
another 0x1000 sized block starting at 0xffffffc00005f000.

	-seed number

	Force the guest to use a deterministic pseudo-random number
generator, seeded with number. This does not affect crypto routines
within the host.

	-L path

	Set the directory for the BIOS, VGA BIOS and keymaps.

To list all the data directories, use -L help.

	-bios file

	Set the filename for the BIOS.

	-enable-kvm

	Enable KVM full virtualization support. This option is only
available if KVM support is enabled when compiling.

	-xen-domid id

	Specify xen guest domain id (XEN only).

	-xen-attach

	Attach to existing xen domain. libxl will use this when starting
QEMU (XEN only). Restrict set of available xen operations to
specified domain id (XEN only).

	-no-reboot

	Exit instead of rebooting.

	-no-shutdown

	Don’t exit QEMU on guest shutdown, but instead only stop the
emulation. This allows for instance switching to monitor to commit
changes to the disk image.

	-loadvm file

	Start right away with a saved state (loadvm in monitor)

	-daemonize

	Daemonize the QEMU process after initialization. QEMU will not
detach from standard IO until it is ready to receive connections on
any of its devices. This option is a useful way for external
programs to launch QEMU without having to cope with initialization
race conditions.

	-option-rom file

	Load the contents of file as an option ROM. This option is useful to
load things like EtherBoot.

	-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]

	Specify base as utc or localtime to let the RTC start at
the current UTC or local time, respectively. localtime is
required for correct date in MS-DOS or Windows. To start at a
specific point in time, provide datetime in the format
2006-06-17T16:01:21 or 2006-06-17. The default base is UTC.

By default the RTC is driven by the host system time. This allows
using of the RTC as accurate reference clock inside the guest,
specifically if the host time is smoothly following an accurate
external reference clock, e.g. via NTP. If you want to isolate the
guest time from the host, you can set clock to rt instead,
which provides a host monotonic clock if host support it. To even
prevent the RTC from progressing during suspension, you can set
clock to vm (virtual clock). ‘clock=vm’ is
recommended especially in icount mode in order to preserve
determinism; however, note that in icount mode the speed of the
virtual clock is variable and can in general differ from the host
clock.

Enable driftfix (i386 targets only) if you experience time drift
problems, specifically with Windows’ ACPI HAL. This option will try
to figure out how many timer interrupts were not processed by the
Windows guest and will re-inject them.

	-icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]

	Enable virtual instruction counter. The virtual cpu will execute one
instruction every 2^N ns of virtual time. If auto is specified
then the virtual cpu speed will be automatically adjusted to keep
virtual time within a few seconds of real time.

When the virtual cpu is sleeping, the virtual time will advance at
default speed unless sleep=on|off is specified. With
sleep=on|off, the virtual time will jump to the next timer
deadline instantly whenever the virtual cpu goes to sleep mode and
will not advance if no timer is enabled. This behavior give
deterministic execution times from the guest point of view.

Note that while this option can give deterministic behavior, it does
not provide cycle accurate emulation. Modern CPUs contain
superscalar out of order cores with complex cache hierarchies. The
number of instructions executed often has little or no correlation
with actual performance.

align=on will activate the delay algorithm which will try to
synchronise the host clock and the virtual clock. The goal is to
have a guest running at the real frequency imposed by the shift
option. Whenever the guest clock is behind the host clock and if
align=on is specified then we print a message to the user to
inform about the delay. Currently this option does not work when
shift is auto. Note: The sync algorithm will work for those
shift values for which the guest clock runs ahead of the host clock.
Typically this happens when the shift value is high (how high
depends on the host machine).

When rr option is specified deterministic record/replay is
enabled. Replay log is written into filename file in record mode and
read from this file in replay mode.

Option rrsnapshot is used to create new vm snapshot named snapshot
at the start of execution recording. In replay mode this option is
used to load the initial VM state.

	-watchdog model

	Create a virtual hardware watchdog device. Once enabled (by a guest
action), the watchdog must be periodically polled by an agent inside
the guest or else the guest will be restarted. Choose a model for
which your guest has drivers.

The model is the model of hardware watchdog to emulate. Use
-watchdog help to list available hardware models. Only one
watchdog can be enabled for a guest.

The following models may be available:

	ib700

	iBASE 700 is a very simple ISA watchdog with a single timer.

	i6300esb

	Intel 6300ESB I/O controller hub is a much more featureful
PCI-based dual-timer watchdog.

	diag288

	A virtual watchdog for s390x backed by the diagnose 288
hypercall (currently KVM only).

	-watchdog-action action

	The action controls what QEMU will do when the watchdog timer
expires. The default is reset (forcefully reset the guest).
Other possible actions are: shutdown (attempt to gracefully
shutdown the guest), poweroff (forcefully poweroff the guest),
inject-nmi (inject a NMI into the guest), pause (pause the
guest), debug (print a debug message and continue), or none
(do nothing).

Note that the shutdown action requires that the guest responds
to ACPI signals, which it may not be able to do in the sort of
situations where the watchdog would have expired, and thus
-watchdog-action shutdown is not recommended for production use.

Examples:

-watchdog i6300esb -watchdog-action pause; -watchdog ib700

	-echr numeric_ascii_value

	Change the escape character used for switching to the monitor when
using monitor and serial sharing. The default is 0x01 when using
the -nographic option. 0x01 is equal to pressing
Control-a. You can select a different character from the ascii
control keys where 1 through 26 map to Control-a through Control-z.
For instance you could use the either of the following to change the
escape character to Control-t.

-echr 0x14; -echr 20

	-show-cursor

	Show cursor.

	-tb-size n

	Set TCG translation block cache size. Deprecated, use
‘-accel tcg,tb-size=n’ instead.

	-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

	

	-incoming rdma:host:port[,ipv4][,ipv6]

	Prepare for incoming migration, listen on a given tcp port.

	-incoming unix:socketpath

	Prepare for incoming migration, listen on a given unix socket.

	-incoming fd:fd

	Accept incoming migration from a given filedescriptor.

	-incoming exec:cmdline

	Accept incoming migration as an output from specified external
command.

	-incoming defer

	Wait for the URI to be specified via migrate_incoming. The monitor
can be used to change settings (such as migration parameters) prior
to issuing the migrate_incoming to allow the migration to begin.

	-only-migratable

	Only allow migratable devices. Devices will not be allowed to enter
an unmigratable state.

	-nodefaults

	Don’t create default devices. Normally, QEMU sets the default
devices like serial port, parallel port, virtual console, monitor
device, VGA adapter, floppy and CD-ROM drive and others. The
-nodefaults option will disable all those default devices.

	-chroot dir

	Immediately before starting guest execution, chroot to the specified
directory. Especially useful in combination with -runas.

	-runas user

	Immediately before starting guest execution, drop root privileges,
switching to the specified user.

	-prom-env variable=value

	Set OpenBIOS nvram variable to given value (PPC, SPARC only).

qemu-system-sparc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'

qemu-system-ppc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=hd:2,\yaboot' \
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'

	-semihosting

	Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).

Note that this allows guest direct access to the host filesystem, so
should only be used with a trusted guest OS.

See the -semihosting-config option documentation for further
information about the facilities this enables.

	-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]

	Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II
only).

Note that this allows guest direct access to the host filesystem, so
should only be used with a trusted guest OS.

On Arm this implements the standard semihosting API, version 2.0.

On M68K this implements the “ColdFire GDB” interface used by
libgloss.

Xtensa semihosting provides basic file IO calls, such as
open/read/write/seek/select. Tensilica baremetal libc for ISS and
linux platform “sim” use this interface.

	target=native|gdb|auto

	Defines where the semihosting calls will be addressed, to QEMU
(native) or to GDB (gdb). The default is auto, which
means gdb during debug sessions and native otherwise.

	chardev=str1

	Send the output to a chardev backend output for native or auto
output when not in gdb

	arg=str1,arg=str2,...

	Allows the user to pass input arguments, and can be used
multiple times to build up a list. The old-style
-kernel/-append method of passing a command line is
still supported for backward compatibility. If both the
--semihosting-config arg and the -kernel/-append are
specified, the former is passed to semihosting as it always
takes precedence.

	-old-param

	Old param mode (ARM only).

	-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]

	Enable Seccomp mode 2 system call filter. ‘on’ will enable syscall
filtering and ‘off’ will disable it. The default is ‘off’.

	obsolete=string

	Enable Obsolete system calls

	elevateprivileges=string

	Disable set*uid|gid system calls

	spawn=string

	Disable *fork and execve

	resourcecontrol=string

	Disable process affinity and schedular priority

	-readconfig file

	Read device configuration from file. This approach is useful when
you want to spawn QEMU process with many command line options but
you don’t want to exceed the command line character limit.

	-writeconfig file

	Write device configuration to file. The file can be either filename
to save command line and device configuration into file or dash
-) character to print the output to stdout. This can be later
used as input file for -readconfig option.

	-no-user-config

	The -no-user-config option makes QEMU not load any of the
user-provided config files on sysconfdir.

	-trace [[enable=]pattern][,events=file][,file=file]

	Specify tracing options.

	
[enable=]PATTERN

	Immediately enable events matching PATTERN
(either event name or a globbing pattern). This option is only
available if QEMU has been compiled with the simple, log
or ftrace tracing backend. To specify multiple events or patterns,
specify the -trace option multiple times.

Use -trace help to print a list of names of trace points.

	
events=FILE

	Immediately enable events listed in FILE.
The file must contain one event name (as listed in the trace-events-all
file) per line; globbing patterns are accepted too. This option is only
available if QEMU has been compiled with the simple, log or
ftrace tracing backend.

	
file=FILE

	Log output traces to FILE.
This option is only available if QEMU has been compiled with
the simple tracing backend.

	-plugin file=file[,arg=string]

	Load a plugin.

	file=file

	Load the given plugin from a shared library file.

	arg=string

	Argument string passed to the plugin. (Can be given multiple
times.)

	-enable-fips

	Enable FIPS 140-2 compliance mode.

	-msg timestamp[=on|off]

	Control error message format.

	timestamp=on|off

	Prefix messages with a timestamp. Default is off.

	-dump-vmstate file

	Dump json-encoded vmstate information for current machine type to
file in file

	-enable-sync-profile

	Enable synchronization profiling.

Generic object creation

	-object typename[,prop1=value1,...]

	Create a new object of type typename setting properties in the order
they are specified. Note that the ‘id’ property must be set. These
objects are placed in the ‘/objects’ path.

	-object memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-nodes=host-nodes,policy=default|preferred|bind|interleave,align=align

	Creates a memory file backend object, which can be used to back
the guest RAM with huge pages.

The id parameter is a unique ID that will be used to
reference this memory region when configuring the -numa
argument.

The size option provides the size of the memory region, and
accepts common suffixes, eg 500M.

The mem-path provides the path to either a shared memory or
huge page filesystem mount.

The share boolean option determines whether the memory
region is marked as private to QEMU, or shared. The latter
allows a co-operating external process to access the QEMU memory
region.

The share is also required for pvrdma devices due to
limitations in the RDMA API provided by Linux.

Setting share=on might affect the ability to configure NUMA
bindings for the memory backend under some circumstances, see
Documentation/vm/numa_memory_policy.txt on the Linux kernel
source tree for additional details.

Setting the discard-data boolean option to on indicates that
file contents can be destroyed when QEMU exits, to avoid
unnecessarily flushing data to the backing file. Note that
discard-data is only an optimization, and QEMU might not
discard file contents if it aborts unexpectedly or is terminated
using SIGKILL.

The merge boolean option enables memory merge, also known as
MADV_MERGEABLE, so that Kernel Samepage Merging will consider
the pages for memory deduplication.

Setting the dump boolean option to off excludes the memory
from core dumps. This feature is also known as MADV_DONTDUMP.

The prealloc boolean option enables memory preallocation.

The host-nodes option binds the memory range to a list of
NUMA host nodes.

The policy option sets the NUMA policy to one of the
following values:

	default

	default host policy

	preferred

	prefer the given host node list for allocation

	bind

	restrict memory allocation to the given host node list

	interleave

	interleave memory allocations across the given host node
list

The align option specifies the base address alignment when
QEMU mmap(2) mem-path, and accepts common suffixes, eg
2M. Some backend store specified by mem-path requires an
alignment different than the default one used by QEMU, eg the
device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
such cases, users can specify the required alignment via this
option.

The pmem option specifies whether the backing file specified
by mem-path is in host persistent memory that can be
accessed using the SNIA NVM programming model (e.g. Intel
NVDIMM). If pmem is set to ‘on’, QEMU will take necessary
operations to guarantee the persistence of its own writes to
mem-path (e.g. in vNVDIMM label emulation and live
migration). Also, we will map the backend-file with MAP_SYNC
flag, which ensures the file metadata is in sync for
mem-path in case of host crash or a power failure. MAP_SYNC
requires support from both the host kernel (since Linux kernel
4.15) and the filesystem of mem-path mounted with DAX
option.

	-object memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave

	Creates a memory backend object, which can be used to back the
guest RAM. Memory backend objects offer more control than the
-m option that is traditionally used to define guest RAM.
Please refer to memory-backend-file for a description of the
options.

	-object memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

	Creates an anonymous memory file backend object, which allows
QEMU to share the memory with an external process (e.g. when
using vhost-user). The memory is allocated with memfd and
optional sealing. (Linux only)

The seal option creates a sealed-file, that will block
further resizing the memory (‘on’ by default).

The hugetlb option specify the file to be created resides in
the hugetlbfs filesystem (since Linux 4.14). Used in conjunction
with the hugetlb option, the hugetlbsize option specify
the hugetlb page size on systems that support multiple hugetlb
page sizes (it must be a power of 2 value supported by the
system).

In some versions of Linux, the hugetlb option is
incompatible with the seal option (requires at least Linux
4.16).

Please refer to memory-backend-file for a description of the
other options.

The share boolean option is on by default with memfd.

	-object rng-builtin,id=id

	Creates a random number generator backend which obtains entropy
from QEMU builtin functions. The id parameter is a unique ID
that will be used to reference this entropy backend from the
virtio-rng device. By default, the virtio-rng device
uses this RNG backend.

	-object rng-random,id=id,filename=/dev/random

	Creates a random number generator backend which obtains entropy
from a device on the host. The id parameter is a unique ID
that will be used to reference this entropy backend from the
virtio-rng device. The filename parameter specifies
which file to obtain entropy from and if omitted defaults to
/dev/urandom.

	-object rng-egd,id=id,chardev=chardevid

	Creates a random number generator backend which obtains entropy
from an external daemon running on the host. The id
parameter is a unique ID that will be used to reference this
entropy backend from the virtio-rng device. The chardev
parameter is the unique ID of a character device backend that
provides the connection to the RNG daemon.

	-object tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off

	Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is
a unique ID which network backends will use to access the
credentials. The endpoint is either server or client
depending on whether the QEMU network backend that uses the
credentials will be acting as a client or as a server. If
verify-peer is enabled (the default) then once the handshake
is completed, the peer credentials will be verified, though this
is a no-op for anonymous credentials.

The dir parameter tells QEMU where to find the credential files.
For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of
DH parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

	-object tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]

	Creates a TLS Pre-Shared Keys (PSK) credentials object, which
can be used to provide TLS support on network backends. The
id parameter is a unique ID which network backends will use
to access the credentials. The endpoint is either server
or client depending on whether the QEMU network backend that
uses the credentials will be acting as a client or as a server.
For clients only, username is the username which will be
sent to the server. If omitted it defaults to “qemu”.

The dir parameter tells QEMU where to find the keys file. It is
called “dir/keys.psk” and contains “username:key” pairs. This
file can most easily be created using the GnuTLS psktool
program.

For server endpoints, dir may also contain a file dh-params.pem
providing diffie-hellman parameters to use for the TLS server.
If the file is missing, QEMU will generate a set of DH
parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated up
front and saved.

	-object tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id

	Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is
a unique ID which network backends will use to access the
credentials. The endpoint is either server or client
depending on whether the QEMU network backend that uses the
credentials will be acting as a client or as a server. If
verify-peer is enabled (the default) then once the handshake
is completed, the peer credentials will be verified. With x509
certificates, this implies that the clients must be provided
with valid client certificates too.

The dir parameter tells QEMU where to find the credential files.
For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of
DH parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

For x509 certificate credentials the directory will contain
further files providing the x509 certificates. The certificates
must be stored in PEM format, in filenames ca-cert.pem,
ca-crl.pem (optional), server-cert.pem (only servers),
server-key.pem (only servers), client-cert.pem (only clients),
and client-key.pem (only clients).

For the server-key.pem and client-key.pem files which contain
sensitive private keys, it is possible to use an encrypted
version by providing the passwordid parameter. This provides the
ID of a previously created secret object containing the
password for decryption.

The priority parameter allows to override the global default
priority used by gnutls. This can be useful if the system
administrator needs to use a weaker set of crypto priorities for
QEMU without potentially forcing the weakness onto all
applications. Or conversely if one wants wants a stronger
default for QEMU than for all other applications, they can do
this through this parameter. Its format is a gnutls priority
string as described at
https://gnutls.org/manual/html_node/Priority-Strings.html.

	-object filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off]

	Interval t can’t be 0, this filter batches the packet delivery:
all packets arriving in a given interval on netdev netdevid are
delayed until the end of the interval. Interval is in
microseconds. status is optional that indicate whether the
netfilter is on (enabled) or off (disabled), the default status
for netfilter will be ‘on’.

queue all|rx|tx is an option that can be applied to any
netfilter.

all: the filter is attached both to the receive and the
transmit queue of the netdev (default).

rx: the filter is attached to the receive queue of the
netdev, where it will receive packets sent to the netdev.

tx: the filter is attached to the transmit queue of the
netdev, where it will receive packets sent by the netdev.

	-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

	filter-mirror on netdev netdevid,mirror net packet to
chardevchardevid, if it has the vnet_hdr_support flag,
filter-mirror will mirror packet with vnet_hdr_len.

	-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

	filter-redirector on netdev netdevid,redirect filter’s net
packet to chardev chardevid,and redirect indev’s packet to
filter.if it has the vnet_hdr_support flag, filter-redirector
will redirect packet with vnet_hdr_len. Create a
filter-redirector we need to differ outdev id from indev id, id
can not be the same. we can just use indev or outdev, but at
least one of indev or outdev need to be specified.

	-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]

	Filter-rewriter is a part of COLO project.It will rewrite tcp
packet to secondary from primary to keep secondary tcp
connection,and rewrite tcp packet to primary from secondary make
tcp packet can be handled by client.if it has the
vnet_hdr_support flag, we can parse packet with vnet header.

usage: colo secondary: -object
filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
filter-rewriter,id=rew0,netdev=hn0,queue=all

	-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len]

	Dump the network traffic on netdev dev to the file specified by
filename. At most len bytes (64k by default) per packet are
stored. The file format is libpcap, so it can be analyzed with
tools such as tcpdump or Wireshark.

	-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id]

	Colo-compare gets packet from primary_inchardevid and
secondary_inchardevid, than compare primary packet with
secondary packet. If the packets are same, we will output
primary packet to outdevchardevid, else we will notify
colo-frame do checkpoint and send primary packet to
outdevchardevid. In order to improve efficiency, we need to put
the task of comparison in another thread. If it has the
vnet_hdr_support flag, colo compare will send/recv packet with
vnet_hdr_len. If you want to use Xen COLO, will need the
notify_dev to notify Xen colo-frame to do checkpoint.

we must use it with the help of filter-mirror and
filter-redirector.

KVM COLO

primary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-object iothread,id=iothread1
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1

secondary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
-device e1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

Xen COLO

primary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object iothread,id=iothread1
-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1

secondary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
-device e1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

If you want to know the detail of above command line, you can
read the colo-compare git log.

	-object cryptodev-backend-builtin,id=id[,queues=queues]

	Creates a cryptodev backend which executes crypto opreation from
the QEMU cipher APIS. The id parameter is a unique ID that will
be used to reference this cryptodev backend from the
virtio-crypto device. The queues parameter is optional,
which specify the queue number of cryptodev backend, the default
of queues is 1.

qemu-system-x86_64 [...] -object cryptodev-backend-builtin,id=cryptodev0 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 [...]

	-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]

	Creates a vhost-user cryptodev backend, backed by a chardev
chardevid. The id parameter is a unique ID that will be used to
reference this cryptodev backend from the virtio-crypto
device. The chardev should be a unix domain socket backed one.
The vhost-user uses a specifically defined protocol to pass
vhost ioctl replacement messages to an application on the other
end of the socket. The queues parameter is optional, which
specify the queue number of cryptodev backend for multiqueue
vhost-user, the default of queues is 1.

qemu-system-x86_64 [...] -chardev socket,id=chardev0,path=/path/to/socket -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 [...]

	-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]

	

	-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]

	Defines a secret to store a password, encryption key, or some
other sensitive data. The sensitive data can either be passed
directly via the data parameter, or indirectly via the file
parameter. Using the data parameter is insecure unless the
sensitive data is encrypted.

The sensitive data can be provided in raw format (the default),
or base64. When encoded as JSON, the raw format only supports
valid UTF-8 characters, so base64 is recommended for sending
binary data. QEMU will convert from which ever format is
provided to the format it needs internally. eg, an RBD password
can be provided in raw format, even though it will be base64
encoded when passed onto the RBD sever.

For added protection, it is possible to encrypt the data
associated with a secret using the AES-256-CBC cipher. Use of
encryption is indicated by providing the keyid and iv
parameters. The keyid parameter provides the ID of a previously
defined secret that contains the AES-256 decryption key. This
key should be 32-bytes long and be base64 encoded. The iv
parameter provides the random initialization vector used for
encryption of this particular secret and should be a base64
encrypted string of the 16-byte IV.

The simplest (insecure) usage is to provide the secret inline

qemu-system-x86_64 -object secret,id=sec0,data=letmein,format=raw

The simplest secure usage is to provide the secret via a file

printf “letmein” > mypasswd.txt # QEMU_SYSTEM_MACRO -object
secret,id=sec0,file=mypasswd.txt,format=raw

For greater security, AES-256-CBC should be used. To illustrate
usage, consider the openssl command line tool which can encrypt
the data. Note that when encrypting, the plaintext must be
padded to the cipher block size (32 bytes) using the standard
PKCS#5/6 compatible padding algorithm.

First a master key needs to be created in base64 encoding:

openssl rand -base64 32 > key.b64
KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')

Each secret to be encrypted needs to have a random
initialization vector generated. These do not need to be kept
secret

openssl rand -base64 16 > iv.b64
IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')

The secret to be defined can now be encrypted, in this case
we’re telling openssl to base64 encode the result, but it could
be left as raw bytes if desired.

SECRET=$(printf "letmein" |
 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)

When launching QEMU, create a master secret pointing to
key.b64 and specify that to be used to decrypt the user
password. Pass the contents of iv.b64 to the second secret

qemu-system-x86_64 -object secret,id=secmaster0,format=base64,file=key.b64 -object secret,id=sec0,keyid=secmaster0,format=base64, data=$SECRET,iv=$(<iv.b64)

	-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,session-file=file]

	Create a Secure Encrypted Virtualization (SEV) guest object,
which can be used to provide the guest memory encryption support
on AMD processors.

When memory encryption is enabled, one of the physical address
bit (aka the C-bit) is utilized to mark if a memory page is
protected. The cbitpos is used to provide the C-bit
position. The C-bit position is Host family dependent hence user
must provide this value. On EPYC, the value should be 47.

When memory encryption is enabled, we loose certain bits in
physical address space. The reduced-phys-bits is used to
provide the number of bits we loose in physical address space.
Similar to C-bit, the value is Host family dependent. On EPYC,
the value should be 5.

The sev-device provides the device file to use for
communicating with the SEV firmware running inside AMD Secure
Processor. The default device is ‘/dev/sev’. If hardware
supports memory encryption then /dev/sev devices are created by
CCP driver.

The policy provides the guest policy to be enforced by the
SEV firmware and restrict what configuration and operational
commands can be performed on this guest by the hypervisor. The
policy should be provided by the guest owner and is bound to the
guest and cannot be changed throughout the lifetime of the
guest. The default is 0.

If guest policy allows sharing the key with another SEV
guest then handle can be use to provide handle of the guest
from which to share the key.

The dh-cert-file and session-file provides the guest
owner’s Public Diffie-Hillman key defined in SEV spec. The PDH
and session parameters are used for establishing a cryptographic
session with the guest owner to negotiate keys used for
attestation. The file must be encoded in base64.

e.g to launch a SEV guest

qemu_system-x86_64
 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 -machine ...,memory-encryption=sev0

	-object authz-simple,id=id,identity=string

	Create an authorization object that will control access to
network services.

The identity parameter is identifies the user and its format
depends on the network service that authorization object is
associated with. For authorizing based on TLS x509 certificates,
the identity must be the x509 distinguished name. Note that care
must be taken to escape any commas in the distinguished name.

An example authorization object to validate a x509 distinguished
name would look like:

qemu-system-x86_64 ...
 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' ...

Note the use of quotes due to the x509 distinguished name
containing whitespace, and escaping of ‘,’.

	-object authz-listfile,id=id,filename=path,refresh=yes|no

	Create an authorization object that will control access to
network services.

The filename parameter is the fully qualified path to a file
containing the access control list rules in JSON format.

An example set of rules that match against SASL usernames might
look like:

{
 "rules": [
 { "match": "fred", "policy": "allow", "format": "exact" },
 { "match": "bob", "policy": "allow", "format": "exact" },
 { "match": "danb", "policy": "deny", "format": "glob" },
 { "match": "dan*", "policy": "allow", "format": "exact" },
],
 "policy": "deny"
}

When checking access the object will iterate over all the rules
and the first rule to match will have its policy value
returned as the result. If no rules match, then the default
policy value is returned.

The rules can either be an exact string match, or they can use
the simple UNIX glob pattern matching to allow wildcards to be
used.

If refresh is set to true the file will be monitored and
automatically reloaded whenever its content changes.

As with the authz-simple object, the format of the identity
strings being matched depends on the network service, but is
usually a TLS x509 distinguished name, or a SASL username.

An example authorization object to validate a SASL username
would look like:

qemu-system-x86_64 ...
 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
 ...

	-object authz-pam,id=id,service=string

	Create an authorization object that will control access to
network services.

The service parameter provides the name of a PAM service to
use for authorization. It requires that a file
/etc/pam.d/service exist to provide the configuration for
the account subsystem.

An example authorization object to validate a TLS x509
distinguished name would look like:

qemu-system-x86_64 ...
 -object authz-pam,id=auth0,service=qemu-vnc
 ...

There would then be a corresponding config file for PAM at
/etc/pam.d/qemu-vnc that contains:

account requisite pam_listfile.so item=user sense=allow \
 file=/etc/qemu/vnc.allow

Finally the /etc/qemu/vnc.allow file would contain the list
of x509 distingished names that are permitted access

CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB

	-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink

	Creates a dedicated event loop thread that devices can be
assigned to. This is known as an IOThread. By default device
emulation happens in vCPU threads or the main event loop thread.
This can become a scalability bottleneck. IOThreads allow device
emulation and I/O to run on other host CPUs.

The id parameter is a unique ID that will be used to
reference this IOThread from -device ...,iothread=id.
Multiple devices can be assigned to an IOThread. Note that not
all devices support an iothread parameter.

The query-iothreads QMP command lists IOThreads and reports
their thread IDs so that the user can configure host CPU
pinning/affinity.

IOThreads use an adaptive polling algorithm to reduce event loop
latency. Instead of entering a blocking system call to monitor
file descriptors and then pay the cost of being woken up when an
event occurs, the polling algorithm spins waiting for events for
a short time. The algorithm’s default parameters are suitable
for many cases but can be adjusted based on knowledge of the
workload and/or host device latency.

The poll-max-ns parameter is the maximum number of
nanoseconds to busy wait for events. Polling can be disabled by
setting this value to 0.

The poll-grow parameter is the multiplier used to increase
the polling time when the algorithm detects it is missing events
due to not polling long enough.

The poll-shrink parameter is the divisor used to decrease
the polling time when the algorithm detects it is spending too
long polling without encountering events.

The polling parameters can be modified at run-time using the
qom-set command (where iothread1 is the IOThread’s
id):

(qemu) qom-set /objects/iothread1 poll-max-ns 100000

Device URL Syntax

In addition to using normal file images for the emulated storage
devices, QEMU can also use networked resources such as iSCSI devices.
These are specified using a special URL syntax.

	iSCSI

	iSCSI support allows QEMU to access iSCSI resources directly and use
as images for the guest storage. Both disk and cdrom images are
supported.

Syntax for specifying iSCSI LUNs is
“iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>”

By default qemu will use the iSCSI initiator-name
‘iqn.2008-11.org.linux-kvm[:<name>]’ but this can also be set from
the command line or a configuration file.

Since version Qemu 2.4 it is possible to specify a iSCSI request
timeout to detect stalled requests and force a reestablishment of the
session. The timeout is specified in seconds. The default is 0 which
means no timeout. Libiscsi 1.15.0 or greater is required for this
feature.

Example (without authentication):

qemu-system-x86_64 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via URL):

qemu-system-x86_64 -drive file=iscsi://user%password@192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via environment variables):

LIBISCSI_CHAP_USERNAME="user" LIBISCSI_CHAP_PASSWORD="password" qemu-system-x86_64 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

	NBD

	QEMU supports NBD (Network Block Devices) both using TCP protocol as
well as Unix Domain Sockets. With TCP, the default port is 10809.

Syntax for specifying a NBD device using TCP, in preferred URI form:
“nbd://<server-ip>[:<port>]/[<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets;
remember that ‘?’ is a shell glob character and may need quoting:
“nbd+unix:///[<export>]?socket=<domain-socket>”

Older syntax that is also recognized:
“nbd:<server-ip>:<port>[:exportname=<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets
“nbd:unix:<domain-socket>[:exportname=<export>]”

Example for TCP

qemu-system-x86_64 --drive file=nbd:192.0.2.1:30000

Example for Unix Domain Sockets

qemu-system-x86_64 --drive file=nbd:unix:/tmp/nbd-socket

	SSH

	QEMU supports SSH (Secure Shell) access to remote disks.

Examples:

qemu-system-x86_64 -drive file=ssh://user@host/path/to/disk.img
qemu-system-x86_64 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other
authentication methods may be supported in future.

	Sheepdog

	Sheepdog is a distributed storage system for QEMU. QEMU supports
using either local sheepdog devices or remote networked devices.

Syntax for specifying a sheepdog device

sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

Example

qemu-system-x86_64 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

See also https://sheepdog.github.io/sheepdog/.

	GlusterFS

	GlusterFS is a user space distributed file system. QEMU supports the
use of GlusterFS volumes for hosting VM disk images using TCP, Unix
Domain Sockets and RDMA transport protocols.

Syntax for specifying a VM disk image on GlusterFS volume is

URI:
gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

JSON:
'json:{"driver":"qcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
 "server":[{"type":"tcp","host":"...","port":"..."},
 {"type":"unix","socket":"..."}]}}'

Example

URI:
qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log

JSON:
qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img",
 "debug":9,"logfile":"/var/log/qemu-gluster.log",
 "server":[{"type":"tcp","host":"1.2.3.4","port":24007},
 {"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

See also http://www.gluster.org.

	HTTP/HTTPS/FTP/FTPS

	QEMU supports read-only access to files accessed over http(s) and
ftp(s).

Syntax using a single filename:

<protocol>://[<username>[:<password>]@]<host>/<path>

where:

	protocol

	‘http’, ‘https’, ‘ftp’, or ‘ftps’.

	username

	Optional username for authentication to the remote server.

	password

	Optional password for authentication to the remote server.

	host

	Address of the remote server.

	path

	Path on the remote server, including any query string.

The following options are also supported:

	url

	The full URL when passing options to the driver explicitly.

	readahead

	The amount of data to read ahead with each range request to the
remote server. This value may optionally have the suffix ‘T’, ‘G’,
‘M’, ‘K’, ‘k’ or ‘b’. If it does not have a suffix, it will be
assumed to be in bytes. The value must be a multiple of 512 bytes.
It defaults to 256k.

	sslverify

	Whether to verify the remote server’s certificate when connecting
over SSL. It can have the value ‘on’ or ‘off’. It defaults to
‘on’.

	cookie

	Send this cookie (it can also be a list of cookies separated by
‘;’) with each outgoing request. Only supported when using
protocols such as HTTP which support cookies, otherwise ignored.

	timeout

	Set the timeout in seconds of the CURL connection. This timeout is
the time that CURL waits for a response from the remote server to
get the size of the image to be downloaded. If not set, the
default timeout of 5 seconds is used.

Note that when passing options to qemu explicitly, driver is the
value of <protocol>.

Example: boot from a remote Fedora 20 live ISO image

qemu_system-x86_64 --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

qemu_system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

Example: boot from a remote Fedora 20 cloud image using a local
overlay for writes, copy-on-read, and a readahead of 64k

qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2

qemu_system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on

Example: boot from an image stored on a VMware vSphere server with a
self-signed certificate using a local overlay for writes, a readahead
of 64k and a timeout of 10 seconds.

qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"https",, "file.url":"https://user:password@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}' /tmp/test.qcow2

qemu_system-x86_64 -drive file=/tmp/test.qcow2

Keys in the graphical frontends

During the graphical emulation, you can use special key combinations to
change modes. The default key mappings are shown below, but if you use
-alt-grab then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt)
and if you use -ctrl-grab then the modifier is the right Ctrl key
(instead of Ctrl-Alt):

	Ctrl-Alt-f

	Toggle full screen

	Ctrl-Alt-+

	Enlarge the screen

	Ctrl-Alt–

	Shrink the screen

	Ctrl-Alt-u

	Restore the screen’s un-scaled dimensions

	Ctrl-Alt-n

	Switch to virtual console ‘n’. Standard console mappings are:

	1

	Target system display

	2

	Monitor

	3

	Serial port

	Ctrl-Alt

	Toggle mouse and keyboard grab.

In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and
Ctrl-PageDown to move in the back log.

Keys in the character backend multiplexer

During emulation, if you are using a character backend multiplexer
(which is the default if you are using -nographic) then several
commands are available via an escape sequence. These key sequences all
start with an escape character, which is Ctrl-a by default, but can be
changed with -echr. The list below assumes you’re using the default.

	Ctrl-a h

	Print this help

	Ctrl-a x

	Exit emulator

	Ctrl-a s

	Save disk data back to file (if -snapshot)

	Ctrl-a t

	Toggle console timestamps

	Ctrl-a b

	Send break (magic sysrq in Linux)

	Ctrl-a c

	Rotate between the frontends connected to the multiplexer (usually
this switches between the monitor and the console)

	Ctrl-a Ctrl-a

	Send the escape character to the frontend

QEMU Monitor

The QEMU monitor is used to give complex commands to the QEMU emulator.
You can use it to:

	Remove or insert removable media images (such as CD-ROM or
floppies).

	Freeze/unfreeze the Virtual Machine (VM) and save or restore its
state from a disk file.

	Inspect the VM state without an external debugger.

Commands

The following commands are available:

	help or ? [cmd]

	Show the help for all commands or just for command cmd.

	commit

	Commit changes to the disk images (if -snapshot is used) or backing files.
If the backing file is smaller than the snapshot, then the backing file
will be resized to be the same size as the snapshot. If the snapshot is
smaller than the backing file, the backing file will not be truncated.
If you want the backing file to match the size of the smaller snapshot,
you can safely truncate it yourself once the commit operation successfully
completes.

	q or quit

	Quit the emulator.

	exit_preconfig

	This command makes QEMU exit the preconfig state and proceed with
VM initialization using configuration data provided on the command line
and via the QMP monitor during the preconfig state. The command is only
available during the preconfig state (i.e. when the –preconfig command
line option was in use).

	block_resize

	Resize a block image while a guest is running. Usually requires guest
action to see the updated size. Resize to a lower size is supported,
but should be used with extreme caution. Note that this command only
resizes image files, it can not resize block devices like LVM volumes.

	block_stream

	Copy data from a backing file into a block device.

	block_job_set_speed

	Set maximum speed for a background block operation.

	block_job_cancel

	Stop an active background block operation (streaming, mirroring).

	block_job_complete

	Manually trigger completion of an active background block operation.
For mirroring, this will switch the device to the destination path.

	block_job_pause

	Pause an active block streaming operation.

	block_job_resume

	Resume a paused block streaming operation.

	eject [-f] device

	Eject a removable medium (use -f to force it).

	drive_del device

	Remove host block device. The result is that guest generated IO is no longer
submitted against the host device underlying the disk. Once a drive has
been deleted, the QEMU Block layer returns -EIO which results in IO
errors in the guest for applications that are reading/writing to the device.
These errors are always reported to the guest, regardless of the drive’s error
actions (drive options rerror, werror).

	change device setting

	Change the configuration of a device.

	change diskdevice filename [format [read-only-mode]]

	Change the medium for a removable disk device to point to filename. eg:

(qemu) change ide1-cd0 /path/to/some.iso

format is optional.

read-only-mode may be used to change the read-only status of the device.
It accepts the following values:

	retain

	Retains the current status; this is the default.

	read-only

	Makes the device read-only.

	read-write

	Makes the device writable.

	change vnc display,options

	Change the configuration of the VNC server. The valid syntax for display
and options are described at Invocation. eg:

(qemu) change vnc localhost:1

change vnc password [password]

Change the password associated with the VNC server. If the new password
is not supplied, the monitor will prompt for it to be entered. VNC
passwords are only significant up to 8 letters. eg:

(qemu) change vnc password
Password: ********

	screendump filename

	Save screen into PPM image filename.

	logfile filename

	Output logs to filename.

	trace-event

	changes status of a trace event

	trace-file on|off|flush

	Open, close, or flush the trace file. If no argument is given, the
status of the trace file is displayed.

	log item1[,…]

	Activate logging of the specified items.

	savevm tag

	Create a snapshot of the whole virtual machine. If tag is
provided, it is used as human readable identifier. If there is already
a snapshot with the same tag, it is replaced. More info at
VM snapshots.

Since 4.0, savevm stopped allowing the snapshot id to be set, accepting
only tag as parameter.

	loadvm tag

	Set the whole virtual machine to the snapshot identified by the tag
tag.

Since 4.0, loadvm stopped accepting snapshot id as parameter.

	delvm tag

	Delete the snapshot identified by tag.

Since 4.0, delvm stopped deleting snapshots by snapshot id, accepting
only tag as parameter.

	singlestep [off]

	Run the emulation in single step mode.
If called with option off, the emulation returns to normal mode.

	stop

	Stop emulation.

	c or cont

	Resume emulation.

	system_wakeup

	Wakeup guest from suspend.

	gdbserver [port]

	Start gdbserver session (default port=1234)

	x/fmt addr

	Virtual memory dump starting at addr.

	xp /fmt addr

	Physical memory dump starting at addr.

fmt is a format which tells the command how to format the
data. Its syntax is: /{count}{format}{size}

	count

	is the number of items to be dumped.

	format

	can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
c (char) or i (asm instruction).

	size

	can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
h or w can be specified with the i format to
respectively select 16 or 32 bit code instruction size.

Examples:

Dump 10 instructions at the current instruction pointer:

(qemu) x/10i $eip
0x90107063: ret
0x90107064: sti
0x90107065: lea 0x0(%esi,1),%esi
0x90107069: lea 0x0(%edi,1),%edi
0x90107070: ret
0x90107071: jmp 0x90107080
0x90107073: nop
0x90107074: nop
0x90107075: nop
0x90107076: nop

Dump 80 16 bit values at the start of the video memory:

(qemu) xp/80hx 0xb8000
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720

	gpa2hva addr

	Print the host virtual address at which the guest’s physical address addr
is mapped.

	gpa2hpa addr

	Print the host physical address at which the guest’s physical address addr
is mapped.

	gva2gpa addr

	Print the guest physical address at which the guest’s virtual address addr
is mapped based on the mapping for the current CPU.

	p or print/fmt expr

	Print expression value. Only the format part of fmt is
used.

	i/fmt addr [.index]

	Read I/O port.

	o/fmt addr val

	Write to I/O port.

	sendkey keys

	Send keys to the guest. keys could be the name of the
key or the raw value in hexadecimal format. Use - to press
several keys simultaneously. Example:

sendkey ctrl-alt-f1

This command is useful to send keys that your graphical user interface
intercepts at low level, such as ctrl-alt-f1 in X Window.

	sync-profile [on|off|reset]

	Enable, disable or reset synchronization profiling. With no arguments, prints
whether profiling is on or off.

	system_reset

	Reset the system.

	system_powerdown

	Power down the system (if supported).

	sum addr size

	Compute the checksum of a memory region.

	device_add config

	Add device.

	device_del id

	Remove device id. id may be a short ID
or a QOM object path.

	cpu index

	Set the default CPU.

	mouse_move dx dy [dz]

	Move the active mouse to the specified coordinates dx dy
with optional scroll axis dz.

	mouse_button val

	Change the active mouse button state val (1=L, 2=M, 4=R).

	mouse_set index

	Set which mouse device receives events at given index, index
can be obtained with:

info mice

	wavcapture filename audiodev [frequency [bits [channels]]]

	Capture audio into filename from audiodev, using sample rate
frequency bits per sample bits and number of channels
channels.

Defaults:

	Sample rate = 44100 Hz - CD quality

	Bits = 16

	Number of channels = 2 - Stereo

	stopcapture index

	Stop capture with a given index, index can be obtained with:

info capture

	memsave addr size file

	save to disk virtual memory dump starting at addr of size size.

	pmemsave addr size file

	save to disk physical memory dump starting at addr of size size.

	boot_set bootdevicelist

	Define new values for the boot device list. Those values will override
the values specified on the command line through the -boot option.

The values that can be specified here depend on the machine type, but are
the same that can be specified in the -boot command line option.

	nmi cpu

	Inject an NMI on the default CPU (x86/s390) or all CPUs (ppc64).

	ringbuf_write device data

	Write data to ring buffer character device device.
data must be a UTF-8 string.

	ringbuf_read device

	Read and print up to size bytes from ring buffer character
device device.
Certain non-printable characters are printed \uXXXX, where XXXX is the
character code in hexadecimal. Character \ is printed \\.
Bug: can screw up when the buffer contains invalid UTF-8 sequences,
NUL characters, after the ring buffer lost data, and when reading
stops because the size limit is reached.

	announce_self

	Trigger a round of GARP/RARP broadcasts; this is useful for explicitly
updating the network infrastructure after a reconfiguration or some forms
of migration. The timings of the round are set by the migration announce
parameters. An optional comma separated interfaces list restricts the
announce to the named set of interfaces. An optional id can be used to
start a separate announce timer and to change the parameters of it later.

	migrate [-d] [-b] [-i] uri

	Migrate to uri (using -d to not wait for completion).

	-b

	for migration with full copy of disk

	-i

	for migration with incremental copy of disk (base image is shared)

	migrate_cancel

	Cancel the current VM migration.

	migrate_continue state

	Continue migration from the paused state state

	migrate_incoming uri

	Continue an incoming migration using the uri (that has the same syntax
as the -incoming option).

	migrate_recover uri

	Continue a paused incoming postcopy migration using the uri.

	migrate_pause

	Pause an ongoing migration. Currently it only supports postcopy.

	migrate_set_cache_size value

	Set cache size to value (in bytes) for xbzrle migrations.

	migrate_set_speed value

	Set maximum speed to value (in bytes) for migrations.

	migrate_set_downtime second

	Set maximum tolerated downtime (in seconds) for migration.

	migrate_set_capability capability state

	Enable/Disable the usage of a capability capability for migration.

	migrate_set_parameter parameter value

	Set the parameter parameter for migration.

	migrate_start_postcopy

	Switch in-progress migration to postcopy mode. Ignored after the end of
migration (or once already in postcopy).

	x_colo_lost_heartbeat

	Tell COLO that heartbeat is lost, a failover or takeover is needed.

	client_migrate_info protocol hostname port tls-port cert-subject

	Set migration information for remote display. This makes the server
ask the client to automatically reconnect using the new parameters
once migration finished successfully. Only implemented for SPICE.

	dump-guest-memory [-p] filename begin length

	

	dump-guest-memory [-z|-l|-s|-w] filename

	Dump guest memory to protocol. The file can be processed with crash or
gdb. Without -z|-l|-s|-w, the dump format is ELF.

	-p

	do paging to get guest’s memory mapping.

	-z

	dump in kdump-compressed format, with zlib compression.

	-l

	dump in kdump-compressed format, with lzo compression.

	-s

	dump in kdump-compressed format, with snappy compression.

	-w

	dump in Windows crashdump format (can be used instead of ELF-dump converting),
for Windows x64 guests with vmcoreinfo driver only

	filename

	dump file name.

	begin

	the starting physical address. It’s optional, and should be
specified together with length.

	length

	the memory size, in bytes. It’s optional, and should be specified
together with begin.

	dump-skeys filename

	Save guest storage keys to a file.

	migration_mode mode

	Enables or disables migration mode.

	snapshot_blkdev

	Snapshot device, using snapshot file as target if provided

	snapshot_blkdev_internal

	Take an internal snapshot on device if it support

	snapshot_delete_blkdev_internal

	Delete an internal snapshot on device if it support

	drive_mirror

	Start mirroring a block device’s writes to a new destination,
using the specified target.

	drive_backup

	Start a point-in-time copy of a block device to a specificed target.

	drive_add

	Add drive to PCI storage controller.

	pcie_aer_inject_error

	Inject PCIe AER error

	netdev_add

	Add host network device.

	netdev_del

	Remove host network device.

	object_add

	Create QOM object.

	object_del

	Destroy QOM object.

	hostfwd_add

	Redirect TCP or UDP connections from host to guest (requires -net user).

	hostfwd_remove

	Remove host-to-guest TCP or UDP redirection.

	balloon value

	Request VM to change its memory allocation to value (in MB).

	set_link name [on|off]

	Switch link name on (i.e. up) or off (i.e. down).

	watchdog_action

	Change watchdog action.

	acl_show aclname

	List all the matching rules in the access control list, and the default
policy. There are currently two named access control lists,
vnc.x509dname and vnc.username matching on the x509 client
certificate distinguished name, and SASL username respectively.

	acl_policy aclname allow|deny

	Set the default access control list policy, used in the event that
none of the explicit rules match. The default policy at startup is
always deny.

	acl_add aclname match allow|deny [index]

	Add a match rule to the access control list, allowing or denying access.
The match will normally be an exact username or x509 distinguished name,
but can optionally include wildcard globs. eg *@EXAMPLE.COM to
allow all users in the EXAMPLE.COM kerberos realm. The match will
normally be appended to the end of the ACL, but can be inserted
earlier in the list if the optional index parameter is supplied.

	acl_remove aclname match

	Remove the specified match rule from the access control list.

	acl_reset aclname

	Remove all matches from the access control list, and set the default
policy back to deny.

	nbd_server_start host:port

	Start an NBD server on the given host and/or port. If the -a
option is included, all of the virtual machine’s block devices that
have an inserted media on them are automatically exported; in this case,
the -w option makes the devices writable too.

	nbd_server_add device [name]

	Export a block device through QEMU’s NBD server, which must be started
beforehand with nbd_server_start. The -w option makes the
exported device writable too. The export name is controlled by name,
defaulting to device.

	nbd_server_remove [-f] name

	Stop exporting a block device through QEMU’s NBD server, which was
previously started with nbd_server_add. The -f
option forces the server to drop the export immediately even if
clients are connected; otherwise the command fails unless there are no
clients.

	nbd_server_stop

	Stop the QEMU embedded NBD server.

	mce cpu bank status mcgstatus addr misc

	Inject an MCE on the given CPU (x86 only).

	getfd fdname

	If a file descriptor is passed alongside this command using the SCM_RIGHTS
mechanism on unix sockets, it is stored using the name fdname for
later use by other monitor commands.

	closefd fdname

	Close the file descriptor previously assigned to fdname using the
getfd command. This is only needed if the file descriptor was never
used by another monitor command.

	block_passwd device password

	Set the encrypted device device password to password

This command is now obsolete and will always return an error since 2.10

	block_set_io_throttle device bps bps_rd bps_wr iops iops_rd iops_wr

	Change I/O throttle limits for a block drive to
bps bps_rd bps_wr iops iops_rd iops_wr.
device can be a block device name, a qdev ID or a QOM path.

	set_password [vnc | spice] password [action-if-connected]

	Change spice/vnc password. Use zero to make the password stay valid
forever. action-if-connected specifies what should happen in
case a connection is established: fail makes the password change
fail. disconnect changes the password and disconnects the
client. keep changes the password and keeps the connection up.
keep is the default.

	expire_password [vnc | spice] expire-time

	Specify when a password for spice/vnc becomes
invalid. expire-time accepts:

	now

	Invalidate password instantly.

	never

	Password stays valid forever.

	+nsec

	Password stays valid for nsec seconds starting now.

	nsec

	Password is invalidated at the given time. nsec are the seconds
passed since 1970, i.e. unix epoch.

	chardev-add args

	chardev-add accepts the same parameters as the -chardev command line switch.

	chardev-change args

	chardev-change accepts existing chardev id and then the same arguments
as the -chardev command line switch (except for “id”).

	chardev-remove id

	Removes the chardev id.

	chardev-send-break id

	Send a break on the chardev id.

	qemu-io device command

	Executes a qemu-io command on the given block device.

	cpu-add id

	Add CPU with id id. This command is deprecated, please
+use device_add instead. For details, refer to
‘docs/cpu-hotplug.rst’.

	qom-list [path]

	Print QOM properties of object at location path

	qom-set path property value

	Set QOM property property of object at location path to value value

	info subcommand

	Show various information about the system state.

	info version

	Show the version of QEMU.

	info network

	Show the network state.

	info chardev

	Show the character devices.

	info block

	Show info of one block device or all block devices.

	info blockstats

	Show block device statistics.

	info block-jobs

	Show progress of ongoing block device operations.

	info registers

	Show the cpu registers.

	info lapic

	Show local APIC state

	info ioapic

	Show io APIC state

	info cpus

	Show infos for each CPU.

	info history

	Show the command line history.

	info irq

	Show the interrupts statistics (if available).

	info pic

	Show PIC state.

	info rdma

	Show RDMA state.

	info pci

	Show PCI information.

	info tlb

	Show virtual to physical memory mappings.

	info mem

	Show the active virtual memory mappings.

	info mtree

	Show memory tree.

	info jit

	Show dynamic compiler info.

	info opcount

	Show dynamic compiler opcode counters

	info sync-profile [-m|-n] [max]

	Show synchronization profiling info, up to max entries (default: 10),
sorted by total wait time.

	-m

	sort by mean wait time

	-n

	do not coalesce objects with the same call site

When different objects that share the same call site are coalesced,
the “Object” field shows—enclosed in brackets—the number of objects
being coalesced.

	info kvm

	Show KVM information.

	info numa

	Show NUMA information.

	info usb

	Show guest USB devices.

	info usbhost

	Show host USB devices.

	info profile

	Show profiling information.

	info capture

	Show capture information.

	info snapshots

	Show the currently saved VM snapshots.

	info status

	Show the current VM status (running|paused).

	info mice

	Show which guest mouse is receiving events.

	info vnc

	Show the vnc server status.

	info spice

	Show the spice server status.

	info name

	Show the current VM name.

	info uuid

	Show the current VM UUID.

	info cpustats

	Show CPU statistics.

	info usernet

	Show user network stack connection states.

	info migrate

	Show migration status.

	info migrate_capabilities

	Show current migration capabilities.

	info migrate_parameters

	Show current migration parameters.

	info migrate_cache_size

	Show current migration xbzrle cache size.

	info balloon

	Show balloon information.

	info qtree

	Show device tree.

	info qdm

	Show qdev device model list.

	info qom-tree

	Show QOM composition tree.

	info roms

	Show roms.

	info trace-events

	Show available trace-events & their state.

	info tpm

	Show the TPM device.

	info memdev

	Show memory backends

	info memory-devices

	Show memory devices.

	info iothreads

	Show iothread’s identifiers.

	info rocker name

	Show rocker switch.

	info rocker-ports name-ports

	Show rocker ports.

	info rocker-of-dpa-flows name [tbl_id]

	Show rocker OF-DPA flow tables.

	info rocker-of-dpa-groups name [type]

	Show rocker OF-DPA groups.

	info skeys address

	Display the value of a storage key (s390 only)

	info cmma address

	Display the values of the CMMA storage attributes for a range of
pages (s390 only)

	info dump

	Display the latest dump status.

	info ramblock

	Dump all the ramblocks of the system.

	info hotpluggable-cpus

	Show information about hotpluggable CPUs

	info vm-generation-id

	Show Virtual Machine Generation ID

	info memory_size_summary

	Display the amount of initially allocated and present hotpluggable (if
enabled) memory in bytes.

	info sev

	Show SEV information.

Integer expressions

The monitor understands integers expressions for every integer argument.
You can use register names to get the value of specifics CPU registers
by prefixing them with $.

Disk Images

QEMU supports many disk image formats, including growable disk images
(their size increase as non empty sectors are written), compressed and
encrypted disk images.

Quick start for disk image creation

You can create a disk image with the command:

qemu-img create myimage.img mysize

where myimage.img is the disk image filename and mysize is its size in
kilobytes. You can add an M suffix to give the size in megabytes and
a G suffix for gigabytes.

See the qemu-img invocation documentation for more information.

Snapshot mode

If you use the option -snapshot, all disk images are considered as
read only. When sectors in written, they are written in a temporary file
created in /tmp. You can however force the write back to the raw
disk images by using the commit monitor command (or C-a s in the
serial console).

VM snapshots

VM snapshots are snapshots of the complete virtual machine including CPU
state, RAM, device state and the content of all the writable disks. In
order to use VM snapshots, you must have at least one non removable and
writable block device using the qcow2 disk image format. Normally
this device is the first virtual hard drive.

Use the monitor command savevm to create a new VM snapshot or
replace an existing one. A human readable name can be assigned to each
snapshot in addition to its numerical ID.

Use loadvm to restore a VM snapshot and delvm to remove a VM
snapshot. info snapshots lists the available snapshots with their
associated information:

(qemu) info snapshots
Snapshot devices: hda
Snapshot list (from hda):
ID TAG VM SIZE DATE VM CLOCK
1 start 41M 2006-08-06 12:38:02 00:00:14.954
2 40M 2006-08-06 12:43:29 00:00:18.633
3 msys 40M 2006-08-06 12:44:04 00:00:23.514

A VM snapshot is made of a VM state info (its size is shown in
info snapshots) and a snapshot of every writable disk image. The VM
state info is stored in the first qcow2 non removable and writable
block device. The disk image snapshots are stored in every disk image.
The size of a snapshot in a disk image is difficult to evaluate and is
not shown by info snapshots because the associated disk sectors are
shared among all the snapshots to save disk space (otherwise each
snapshot would need a full copy of all the disk images).

When using the (unrelated) -snapshot option
(Snapshot mode),
you can always make VM snapshots, but they are deleted as soon as you
exit QEMU.

VM snapshots currently have the following known limitations:

	They cannot cope with removable devices if they are removed or
inserted after a snapshot is done.

	A few device drivers still have incomplete snapshot support so their
state is not saved or restored properly (in particular USB).

Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with
any of the tools (like qemu-img). This includes the preferred formats
raw and qcow2 as well as formats that are supported for compatibility with
older QEMU versions or other hypervisors.

Depending on the image format, different options can be passed to
qemu-img create and qemu-img convert using the -o option.
This section describes each format and the options that are supported for it.

	
raw

	Raw disk image format. This format has the advantage of
being simple and easily exportable to all other emulators. If your
file system supports holes (for example in ext2 or ext3 on
Linux or NTFS on Windows), then only the written sectors will reserve
space. Use qemu-img info to know the real size used by the
image or ls -ls on Unix/Linux.

Supported options:

	
preallocation

	Preallocation mode (allowed values: off, falloc,
full). falloc mode preallocates space for image by
calling posix_fallocate(). full mode preallocates space
for image by writing data to underlying storage. This data may or
may not be zero, depending on the storage location.

	
qcow2

	QEMU image format, the most versatile format. Use it to have smaller
images (useful if your filesystem does not supports holes, for example
on Windows), zlib based compression and support of multiple VM
snapshots.

Supported options:

	
compat

	Determines the qcow2 version to use. compat=0.10 uses the
traditional image format that can be read by any QEMU since 0.10.
compat=1.1 enables image format extensions that only QEMU 1.1 and
newer understand (this is the default). Amongst others, this includes
zero clusters, which allow efficient copy-on-read for sparse images.

	
backing_file

	File name of a base image (see create subcommand)

	
backing_fmt

	Image format of the base image

	
encryption

	This option is deprecated and equivalent to encrypt.format=aes

	
encrypt.format

	If this is set to luks, it requests that the qcow2 payload (not
qcow2 header) be encrypted using the LUKS format. The passphrase to
use to unlock the LUKS key slot is given by the encrypt.key-secret
parameter. LUKS encryption parameters can be tuned with the other
encrypt.* parameters.

If this is set to aes, the image is encrypted with 128-bit AES-CBC.
The encryption key is given by the encrypt.key-secret parameter.
This encryption format is considered to be flawed by modern cryptography
standards, suffering from a number of design problems:

	The AES-CBC cipher is used with predictable initialization vectors based
on the sector number. This makes it vulnerable to chosen plaintext attacks
which can reveal the existence of encrypted data.

	The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the encryption.

	In the event of the passphrase being compromised there is no way to
change the passphrase to protect data in any qcow images. The files must
be cloned, using a different encryption passphrase in the new file. The
original file must then be securely erased using a program like shred,
though even this is ineffective with many modern storage technologies.

The use of this is no longer supported in system emulators. Support only
remains in the command line utilities, for the purposes of data liberation
and interoperability with old versions of QEMU. The luks format
should be used instead.

	
encrypt.key-secret

	Provides the ID of a secret object that contains the passphrase
(encrypt.format=luks) or encryption key (encrypt.format=aes).

	
encrypt.cipher-alg

	Name of the cipher algorithm and key length. Currently defaults
to aes-256. Only used when encrypt.format=luks.

	
encrypt.cipher-mode

	Name of the encryption mode to use. Currently defaults to xts.
Only used when encrypt.format=luks.

	
encrypt.ivgen-alg

	Name of the initialization vector generator algorithm. Currently defaults
to plain64. Only used when encrypt.format=luks.

	
encrypt.ivgen-hash-alg

	Name of the hash algorithm to use with the initialization vector generator
(if required). Defaults to sha256. Only used when encrypt.format=luks.

	
encrypt.hash-alg

	Name of the hash algorithm to use for PBKDF algorithm
Defaults to sha256. Only used when encrypt.format=luks.

	
encrypt.iter-time

	Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
Defaults to 2000. Only used when encrypt.format=luks.

	
cluster_size

	Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
sizes can improve the image file size whereas larger cluster sizes generally
provide better performance.

	
preallocation

	Preallocation mode (allowed values: off, metadata, falloc,
full). An image with preallocated metadata is initially larger but can
improve performance when the image needs to grow. falloc and full
preallocations are like the same options of raw format, but sets up
metadata also.

	
lazy_refcounts

	If this option is set to on, reference count updates are postponed with
the goal of avoiding metadata I/O and improving performance. This is
particularly interesting with cache=writethrough which doesn’t batch
metadata updates. The tradeoff is that after a host crash, the reference count
tables must be rebuilt, i.e. on the next open an (automatic) qemu-img
check -r all is required, which may take some time.

This option can only be enabled if compat=1.1 is specified.

	
nocow

	If this option is set to on, it will turn off COW of the file. It’s only
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more
when the guest on the VM also using btrfs as file system. Turning off
COW is a way to mitigate this bad performance. Generally there are two
ways to turn off COW on btrfs:

	Disable it by mounting with nodatacow, then all newly created files
will be NOCOW.

	For an empty file, add the NOCOW file attribute. That’s what this
option does.

Note: this option is only valid to new or empty files. If there is
an existing file which is COW and has data blocks already, it couldn’t
be changed to NOCOW by setting nocow=on. One can issue lsattr
filename to check if the NOCOW flag is set or not (Capital ‘C’ is
NOCOW flag).

	
qed

	Old QEMU image format with support for backing files and compact image files
(when your filesystem or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the
lazy_refcounts=on option to get a more QED-like behaviour.

Supported options:

	
backing_file

	File name of a base image (see create subcommand).

	
backing_fmt

	Image file format of backing file (optional). Useful if the format cannot be
autodetected because it has no header, like some vhd/vpc files.

	
cluster_size

	Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.

	
table_size

	Changes the number of clusters per L1/L2 table (must be
power-of-2 between 1 and 16). There is normally no need to
change this value but this option can between used for
performance benchmarking.

	
qcow

	Old QEMU image format with support for backing files, compact image files,
encryption and compression.

Supported options:

	
backing_file

	File name of a base image (see create subcommand)

	
encryption

	This option is deprecated and equivalent to encrypt.format=aes

	
encrypt.format

	If this is set to aes, the image is encrypted with 128-bit AES-CBC.
The encryption key is given by the encrypt.key-secret parameter.
This encryption format is considered to be flawed by modern cryptography
standards, suffering from a number of design problems enumerated previously
against the qcow2 image format.

The use of this is no longer supported in system emulators. Support only
remains in the command line utilities, for the purposes of data liberation
and interoperability with old versions of QEMU.

Users requiring native encryption should use the qcow2 format
instead with encrypt.format=luks.

	
encrypt.key-secret

	Provides the ID of a secret object that contains the encryption
key (encrypt.format=aes).

	
luks

	LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup

Supported options:

	
key-secret

	Provides the ID of a secret object that contains the passphrase.

	
cipher-alg

	Name of the cipher algorithm and key length. Currently defaults
to aes-256.

	
cipher-mode

	Name of the encryption mode to use. Currently defaults to xts.

	
ivgen-alg

	Name of the initialization vector generator algorithm. Currently defaults
to plain64.

	
ivgen-hash-alg

	Name of the hash algorithm to use with the initialization vector generator
(if required). Defaults to sha256.

	
hash-alg

	Name of the hash algorithm to use for PBKDF algorithm
Defaults to sha256.

	
iter-time

	Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
Defaults to 2000.

	
vdi

	VirtualBox 1.1 compatible image format.

Supported options:

	
static

	If this option is set to on, the image is created with metadata
preallocation.

	
vmdk

	VMware 3 and 4 compatible image format.

Supported options:

	
backing_file

	File name of a base image (see create subcommand).

	
compat6

	Create a VMDK version 6 image (instead of version 4)

	
hwversion

	Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
if hwversion is specified.

	
subformat

	Specifies which VMDK subformat to use. Valid options are
monolithicSparse (default),
monolithicFlat,
twoGbMaxExtentSparse,
twoGbMaxExtentFlat and
streamOptimized.

	
vpc

	VirtualPC compatible image format (VHD).

Supported options:

	
subformat

	Specifies which VHD subformat to use. Valid options are
dynamic (default) and fixed.

	
VHDX

	Hyper-V compatible image format (VHDX).

Supported options:

	
subformat

	Specifies which VHDX subformat to use. Valid options are
dynamic (default) and fixed.

	
block_state_zero

	Force use of payload blocks of type ‘ZERO’. Can be set to on (default)
or off. When set to off, new blocks will be created as
PAYLOAD_BLOCK_NOT_PRESENT, which means parsers are free to return
arbitrary data for those blocks. Do not set to off when using
qemu-img convert with subformat=dynamic.

	
block_size

	Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on
image size.

	
log_size

	Log size; min 1 MB.

Read-only formats

More disk image file formats are supported in a read-only mode.

	
bochs

	Bochs images of growing type.

	
cloop

	Linux Compressed Loop image, useful only to reuse directly compressed
CD-ROM images present for example in the Knoppix CD-ROMs.

	
dmg

	Apple disk image.

	
parallels

	Parallels disk image format.

Using host drives

In addition to disk image files, QEMU can directly access host
devices. We describe here the usage for QEMU version >= 0.8.3.

Linux

On Linux, you can directly use the host device filename instead of a
disk image filename provided you have enough privileges to access
it. For example, use /dev/cdrom to access to the CDROM.

	CD

	You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by
the guest OS is supported. Currently only data CDs are supported.

	Floppy

	You can specify a floppy device even if no floppy is loaded. Floppy
removal is currently not detected accurately (if you change floppy
without doing floppy access while the floppy is not loaded, the guest
OS will think that the same floppy is loaded).
Use of the host’s floppy device is deprecated, and support for it will
be removed in a future release.

	Hard disks

	Hard disks can be used. Normally you must specify the whole disk
(/dev/hdb instead of /dev/hdb1) so that the guest OS can
see it as a partitioned disk. WARNING: unless you know what you do, it
is better to only make READ-ONLY accesses to the hard disk otherwise
you may corrupt your host data (use the -snapshot command
line option or modify the device permissions accordingly).

Windows

	CD

	The preferred syntax is the drive letter (e.g. d:). The
alternate syntax \\.\d: is supported. /dev/cdrom is
supported as an alias to the first CDROM drive.

Currently there is no specific code to handle removable media, so it
is better to use the change or eject monitor commands to
change or eject media.

	Hard disks

	Hard disks can be used with the syntax: \\.\PhysicalDriveN
where N is the drive number (0 is the first hard disk).

WARNING: unless you know what you do, it is better to only make
READ-ONLY accesses to the hard disk otherwise you may corrupt your
host data (use the -snapshot command line so that the
modifications are written in a temporary file).

Mac OS X

/dev/cdrom is an alias to the first CDROM.

Currently there is no specific code to handle removable media, so it
is better to use the change or eject monitor commands to
change or eject media.

Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:

qemu-system-x86_64 linux.img -hdb fat:/my_directory

Then you access access to all the files in the /my_directory
directory without having to copy them in a disk image or to export
them via SAMBA or NFS. The default access is read-only.

Floppies can be emulated with the :floppy: option:

qemu-system-x86_64 linux.img -fda fat:floppy:/my_directory

A read/write support is available for testing (beta stage) with the
:rw: option:

qemu-system-x86_64 linux.img -fda fat:floppy:rw:/my_directory

What you should never do:

	use non-ASCII filenames

	use “-snapshot” together with “:rw:”

	expect it to work when loadvm’ing

	write to the FAT directory on the host system while accessing it with the guest system

NBD access

QEMU can access directly to block device exported using the Network Block Device
protocol.

qemu-system-x86_64 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/

If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:

qemu-system-x86_64 linux.img -hdb nbd+unix://?socket=/tmp/my_socket

In this case, the block device must be exported using qemu-nbd:

qemu-nbd --socket=/tmp/my_socket my_disk.qcow2

The use of qemu-nbd allows sharing of a disk between several guests:

qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2

and then you can use it with two guests:

qemu-system-x86_64 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
qemu-system-x86_64 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket

If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU’s
own embedded NBD server), you must specify an export name in the URI:

qemu-system-x86_64 -cdrom nbd://localhost/debian-500-ppc-netinst
qemu-system-x86_64 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst

The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
also available. Here are some example of the older syntax:

qemu-system-x86_64 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
qemu-system-x86_64 linux2.img -hdb nbd:unix:/tmp/my_socket
qemu-system-x86_64 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst

Sheepdog disk images

Sheepdog is a distributed storage system for QEMU. It provides highly
available block level storage volumes that can be attached to
QEMU-based virtual machines.

You can create a Sheepdog disk image with the command:

qemu-img create sheepdog:///IMAGE SIZE

where IMAGE is the Sheepdog image name and SIZE is its
size.

To import the existing FILENAME to Sheepdog, you can use a
convert command.

qemu-img convert FILENAME sheepdog:///IMAGE

You can boot from the Sheepdog disk image with the command:

qemu-system-x86_64 sheepdog:///IMAGE

You can also create a snapshot of the Sheepdog image like qcow2.

qemu-img snapshot -c TAG sheepdog:///IMAGE

where TAG is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.

qemu-system-x86_64 sheepdog:///IMAGE#TAG

You can create a cloned image from the existing snapshot.

qemu-img create -b sheepdog:///BASE#TAG sheepdog:///IMAGE

where BASE is an image name of the source snapshot and TAG
is its tag name.

You can use an unix socket instead of an inet socket:

qemu-system-x86_64 sheepdog+unix:///IMAGE?socket=PATH

If the Sheepdog daemon doesn’t run on the local host, you need to
specify one of the Sheepdog servers to connect to.

qemu-img create sheepdog://HOSTNAME:PORT/IMAGE SIZE
qemu-system-x86_64 sheepdog://HOSTNAME:PORT/IMAGE

iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer
network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as
any other ordinary SCSI device on the host and then to access this device as a
/dev/sd device from QEMU. How to do this differs between host OSes.

The second method involves using the iSCSI initiator that is built into
QEMU. This provides a mechanism that works the same way regardless of which
host OS you are running QEMU on. This section will describe this second method
of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs. URL syntax:

iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn-name>/<lun>

Username and password are optional and only used if your target is set up
using CHAP authentication for access control.
Alternatively the username and password can also be set via environment
variables to have these not show up in the process list:

export LIBISCSI_CHAP_USERNAME=<username>
export LIBISCSI_CHAP_PASSWORD=<password>
iscsi://<host>/<target-iqn-name>/<lun>

Various session related parameters can be set via special options, either
in a configuration file provided via ‘-readconfig’ or directly on the
command line.

If the initiator-name is not specified qemu will use a default name
of ‘iqn.2008-11.org.linux-kvm[:<uuid>’] where <uuid> is the UUID of the
virtual machine. If the UUID is not specified qemu will use
‘iqn.2008-11.org.linux-kvm[:<name>’] where <name> is the name of the
virtual machine.

Setting a specific initiator name to use when logging in to the target:

-iscsi initiator-name=iqn.qemu.test:my-initiator

Controlling which type of header digest to negotiate with the target:

-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

These can also be set via a configuration file:

[iscsi]
 user = "CHAP username"
 password = "CHAP password"
 initiator-name = "iqn.qemu.test:my-initiator"
 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 header-digest = "CRC32C"

Setting the target name allows different options for different targets:

[iscsi "iqn.target.name"]
 user = "CHAP username"
 password = "CHAP password"
 initiator-name = "iqn.qemu.test:my-initiator"
 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 header-digest = "CRC32C"

How to use a configuration file to set iSCSI configuration options:

cat >iscsi.conf <<EOF
[iscsi]
 user = "me"
 password = "my password"
 initiator-name = "iqn.qemu.test:my-initiator"
 header-digest = "CRC32C"
EOF

qemu-system-x86_64 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 -readconfig iscsi.conf

How to set up a simple iSCSI target on loopback and access it via QEMU:
this example shows how to set up an iSCSI target with one CDROM and one DISK
using the Linux STGT software target. This target is available on Red Hat based
systems as the package ‘scsi-target-utils’.

tgtd --iscsi portal=127.0.0.1:3260
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
 -b /IMAGES/disk.img --device-type=disk
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
 -b /IMAGES/cd.iso --device-type=cd
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

qemu-system-x86_64 -iscsi initiator-name=iqn.qemu.test:my-initiator \
 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2

GlusterFS disk images

GlusterFS is a user space distributed file system.

You can boot from the GlusterFS disk image with the command:

URI:

qemu-system-x86_64 -drive file=gluster[+TYPE]://[HOST}[:PORT]]/VOLUME/PATH
 [?socket=...][,file.debug=9][,file.logfile=...]

JSON:

qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
 "server":[{"type":"tcp","host":"...","port":"..."},
 {"type":"unix","socket":"..."}]}}'

gluster is the protocol.

TYPE specifies the transport type used to connect to gluster
management daemon (glusterd). Valid transport types are
tcp and unix. In the URI form, if a transport type isn’t specified,
then tcp type is assumed.

HOST specifies the server where the volume file specification for
the given volume resides. This can be either a hostname or an ipv4 address.
If transport type is unix, then HOST field should not be specified.
Instead socket field needs to be populated with the path to unix domain
socket.

PORT is the port number on which glusterd is listening. This is optional
and if not specified, it defaults to port 24007. If the transport type is unix,
then PORT should not be specified.

VOLUME is the name of the gluster volume which contains the disk image.

PATH is the path to the actual disk image that resides on gluster volume.

debug is the logging level of the gluster protocol driver. Debug levels
are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
The default level is 4. The current logging levels defined in the gluster source
are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
6 - Notice, 7 - Info, 8 - Debug, 9 - Trace

logfile is a commandline option to mention log file path which helps in
logging to the specified file and also help in persisting the gfapi logs. The
default is stderr.

You can create a GlusterFS disk image with the command:

qemu-img create gluster://HOST/VOLUME/PATH SIZE

Examples

qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img",
 "debug":9,"logfile":"/var/log/qemu-gluster.log",
 "server":[{"type":"tcp","host":"1.2.3.4","port":24007},
 {"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server
by using the ssh protocol:

qemu-system-x86_64 -drive file=ssh://[USER@]SERVER[:PORT]/PATH[?host_key_check=HOST_KEY_CHECK]

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=ssh[,file.user=USER],file.host=SERVER[,file.port=PORT],file.path=PATH[,file.host_key_check=HOST_KEY_CHECK]

ssh is the protocol.

USER is the remote user. If not specified, then the local
username is tried.

SERVER specifies the remote ssh server. Any ssh server can be
used, but it must implement the sftp-server protocol. Most Unix/Linux
systems should work without requiring any extra configuration.

PORT is the port number on which sshd is listening. By default
the standard ssh port (22) is used.

PATH is the path to the disk image.

The optional HOST_KEY_CHECK parameter controls how the remote
host’s key is checked. The default is yes which means to use
the local .ssh/known_hosts file. Setting this to no
turns off known-hosts checking. Or you can check that the host key
matches a specific fingerprint:
host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8
(sha1: can also be used as a prefix, but note that OpenSSH
tools only use MD5 to print fingerprints).

Currently authentication must be done using ssh-agent. Other
authentication methods may be supported in future.

Note: Many ssh servers do not support an fsync-style operation.
The ssh driver cannot guarantee that disk flush requests are
obeyed, and this causes a risk of disk corruption if the remote
server or network goes down during writes. The driver will
print a warning when fsync is not supported:

warning: ssh server ssh.example.com:22 does not support fsync

With sufficiently new versions of libssh and OpenSSH, fsync is
supported.

NVMe disk images

NVM Express (NVMe) storage controllers can be accessed directly by a userspace
driver in QEMU. This bypasses the host kernel file system and block layers
while retaining QEMU block layer functionalities, such as block jobs, I/O
throttling, image formats, etc. Disk I/O performance is typically higher than
with -drive file=/dev/sda using either thread pool or linux-aio.

The controller will be exclusively used by the QEMU process once started. To be
able to share storage between multiple VMs and other applications on the host,
please use the file based protocols.

Before starting QEMU, bind the host NVMe controller to the host vfio-pci
driver. For example:

modprobe vfio-pci
lspci -n -s 0000:06:0d.0
06:0d.0 0401: 1102:0002 (rev 08)
echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id

qemu-system-x86_64 -drive file=nvme://HOST:BUS:SLOT.FUNC/NAMESPACE

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=nvme,file.device=HOST:BUS:SLOT.FUNC,file.namespace=NAMESPACE

HOST:BUS:SLOT.FUNC is the NVMe controller’s PCI device
address on the host.

NAMESPACE is the NVMe namespace number, starting from 1.

Disk image file locking

By default, QEMU tries to protect image files from unexpected concurrent
access, as long as it’s supported by the block protocol driver and host
operating system. If multiple QEMU processes (including QEMU emulators and
utilities) try to open the same image with conflicting accessing modes, all but
the first one will get an error.

This feature is currently supported by the file protocol on Linux with the Open
File Descriptor (OFD) locking API, and can be configured to fall back to POSIX
locking if the POSIX host doesn’t support Linux OFD locking.

To explicitly enable image locking, specify “locking=on” in the file protocol
driver options. If OFD locking is not possible, a warning will be printed and
the POSIX locking API will be used. In this case there is a risk that the lock
will get silently lost when doing hot plugging and block jobs, due to the
shortcomings of the POSIX locking API.

QEMU transparently handles lock handover during shared storage migration. For
shared virtual disk images between multiple VMs, the “share-rw” device option
should be used.

By default, the guest has exclusive write access to its disk image. If the
guest can safely share the disk image with other writers the
-device ...,share-rw=on parameter can be used. This is only safe if
the guest is running software, such as a cluster file system, that
coordinates disk accesses to avoid corruption.

Note that share-rw=on only declares the guest’s ability to share the disk.
Some QEMU features, such as image file formats, require exclusive write access
to the disk image and this is unaffected by the share-rw=on option.

Alternatively, locking can be fully disabled by “locking=off” block device
option. In the command line, the option is usually in the form of
“file.locking=off” as the protocol driver is normally placed as a “file” child
under a format driver. For example:

-blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file

To check if image locking is active, check the output of the “lslocks” command
on host and see if there are locks held by the QEMU process on the image file.
More than one byte could be locked by the QEMU instance, each byte of which
reflects a particular permission that is acquired or protected by the running
block driver.

Network emulation

QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
target) and can connect them to a network backend on the host or an
emulated hub. The various host network backends can either be used to
connect the NIC of the guest to a real network (e.g. by using a TAP
devices or the non-privileged user mode network stack), or to other
guest instances running in another QEMU process (e.g. by using the
socket host network backend).

Using TAP network interfaces

This is the standard way to connect QEMU to a real network. QEMU adds a
virtual network device on your host (called tapN), and you can then
configure it as if it was a real ethernet card.

Linux host

As an example, you can download the linux-test-xxx.tar.gz archive
and copy the script qemu-ifup in /etc and configure properly
sudo so that the command ifconfig contained in qemu-ifup can
be executed as root. You must verify that your host kernel supports the
TAP network interfaces: the device /dev/net/tun must be present.

See Invocation to have examples of command
lines using the TAP network interfaces.

Windows host

There is a virtual ethernet driver for Windows 2000/XP systems, called
TAP-Win32. But it is not included in standard QEMU for Windows, so you
will need to get it separately. It is part of OpenVPN package, so
download OpenVPN from : https://openvpn.net/.

Using the user mode network stack

By using the option -net user (default configuration if no -net
option is specified), QEMU uses a completely user mode network stack
(you don’t need root privilege to use the virtual network). The virtual
network configuration is the following:

guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
 | (10.0.2.2)
 |
 ----> DNS server (10.0.2.3)
 |
 ----> SMB server (10.0.2.4)

The QEMU VM behaves as if it was behind a firewall which blocks all
incoming connections. You can use a DHCP client to automatically
configure the network in the QEMU VM. The DHCP server assign addresses
to the hosts starting from 10.0.2.15.

In order to check that the user mode network is working, you can ping
the address 10.0.2.2 and verify that you got an address in the range
10.0.2.x from the QEMU virtual DHCP server.

Note that ICMP traffic in general does not work with user mode
networking. ping, aka. ICMP echo, to the local router (10.0.2.2)
shall work, however. If you’re using QEMU on Linux >= 3.0, it can use
unprivileged ICMP ping sockets to allow ping to the Internet. The
host admin has to set the ping_group_range in order to grant access to
those sockets. To allow ping for GID 100 (usually users group):

echo 100 100 > /proc/sys/net/ipv4/ping_group_range

When using the built-in TFTP server, the router is also the TFTP server.

When using the '-netdev user,hostfwd=...' option, TCP or UDP
connections can be redirected from the host to the guest. It allows for
example to redirect X11, telnet or SSH connections.

Hubs

QEMU can simulate several hubs. A hub can be thought of as a virtual
connection between several network devices. These devices can be for
example QEMU virtual ethernet cards or virtual Host ethernet devices
(TAP devices). You can connect guest NICs or host network backends to
such a hub using the -netdev
hubport or -nic hubport options. The legacy -net option also
connects the given device to the emulated hub with ID 0 (i.e. the
default hub) unless you specify a netdev with -net nic,netdev=xxx
here.

Connecting emulated networks between QEMU instances

Using the -netdev socket (or -nic socket or -net socket)
option, it is possible to create emulated networks that span several
QEMU instances. See the description of the -netdev socket option in
Invocation to have a basic
example.

USB emulation

QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
plug virtual USB devices or real host USB devices (only works with
certain host operating systems). QEMU will automatically create and
connect virtual USB hubs as necessary to connect multiple USB devices.

Connecting USB devices

USB devices can be connected with the -device usb-... command line
option or the device_add monitor command. Available devices are:

	usb-mouse

	Virtual Mouse. This will override the PS/2 mouse emulation when
activated.

	usb-tablet

	Pointer device that uses absolute coordinates (like a touchscreen).
This means QEMU is able to report the mouse position without having
to grab the mouse. Also overrides the PS/2 mouse emulation when
activated.

	usb-storage,drive=drive_id

	Mass storage device backed by drive_id (see
Disk Images)

	usb-uas

	USB attached SCSI device, see
usb-storage.txt [https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt]
for details

	usb-bot

	Bulk-only transport storage device, see
usb-storage.txt [https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt]
for details here, too

	usb-mtp,rootdir=dir

	Media transfer protocol device, using dir as root of the file tree
that is presented to the guest.

	usb-host,hostbus=bus,hostaddr=addr

	Pass through the host device identified by bus and addr

	usb-host,vendorid=vendor,productid=product

	Pass through the host device identified by vendor and product ID

	usb-wacom-tablet

	Virtual Wacom PenPartner tablet. This device is similar to the
tablet above but it can be used with the tslib library because in
addition to touch coordinates it reports touch pressure.

	usb-kbd

	Standard USB keyboard. Will override the PS/2 keyboard (if present).

	usb-serial,chardev=id

	Serial converter. This emulates an FTDI FT232BM chip connected to
host character device id.

	usb-braille,chardev=id

	Braille device. This will use BrlAPI to display the braille output on
a real or fake device referenced by id.

	usb-net[,netdev=id]

	Network adapter that supports CDC ethernet and RNDIS protocols. id
specifies a netdev defined with -netdev …,id=id. For instance,
user-mode networking can be used with

qemu-system-x86_64 [...] -netdev user,id=net0 -device usb-net,netdev=net0

	usb-ccid

	Smartcard reader device

	usb-audio

	USB audio device

Using host USB devices on a Linux host

WARNING: this is an experimental feature. QEMU will slow down when using
it. USB devices requiring real time streaming (i.e. USB Video Cameras)
are not supported yet.

	If you use an early Linux 2.4 kernel, verify that no Linux driver is
actually using the USB device. A simple way to do that is simply to
disable the corresponding kernel module by renaming it from
mydriver.o to mydriver.o.disabled.

	Verify that /proc/bus/usb is working (most Linux distributions
should enable it by default). You should see something like that:

ls /proc/bus/usb
001 devices drivers

	Since only root can access to the USB devices directly, you can
either launch QEMU as root or change the permissions of the USB
devices you want to use. For testing, the following suffices:

chown -R myuid /proc/bus/usb

	Launch QEMU and do in the monitor:

info usbhost
 Device 1.2, speed 480 Mb/s
 Class 00: USB device 1234:5678, USB DISK

You should see the list of the devices you can use (Never try to use
hubs, it won’t work).

	Add the device in QEMU by using:

device_add usb-host,vendorid=0x1234,productid=0x5678

Normally the guest OS should report that a new USB device is plugged.
You can use the option -device usb-host,... to do the same.

	Now you can try to use the host USB device in QEMU.

When relaunching QEMU, you may have to unplug and plug again the USB
device to make it work again (this is a bug).

Inter-VM Shared Memory device

On Linux hosts, a shared memory device is available. The basic syntax
is:

qemu_system-x86_64 -device ivshmem-plain,memdev=hostmem

where hostmem names a host memory backend. For a POSIX shared memory
backend, use something like

-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=hostmem

If desired, interrupts can be sent between guest VMs accessing the same
shared memory region. Interrupt support requires using a shared memory
server and using a chardev socket to connect to it. The code for the
shared memory server is qemu.git/contrib/ivshmem-server. An example
syntax when using the shared memory server is:

First start the ivshmem server once and for all
ivshmem-server -p pidfile -S path -m shm-name -l shm-size -n vectors

Then start your qemu instances with matching arguments
qemu_system-x86_64 -device ivshmem-doorbell,vectors=vectors,chardev=id
 -chardev socket,path=path,id=id

When using the server, the guest will be assigned a VM ID (>=0) that
allows guests using the same server to communicate via interrupts.
Guests can read their VM ID from a device register (see
ivshmem-spec.txt).

Migration with ivshmem

With device property master=on, the guest will copy the shared
memory on migration to the destination host. With master=off, the
guest will not be able to migrate with the device attached. In the
latter case, the device should be detached and then reattached after
migration using the PCI hotplug support.

At most one of the devices sharing the same memory can be master. The
master must complete migration before you plug back the other devices.

ivshmem and hugepages

Instead of specifying the <shm size> using POSIX shm, you may specify a
memory backend that has hugepage support:

qemu_system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
 -device ivshmem-plain,memdev=mb1

ivshmem-server also supports hugepages mount points with the -m
memory path argument.

Direct Linux Boot

This section explains how to launch a Linux kernel inside QEMU without
having to make a full bootable image. It is very useful for fast Linux
kernel testing.

The syntax is:

qemu-system-x86_64 -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"

Use -kernel to provide the Linux kernel image and -append to
give the kernel command line arguments. The -initrd option can be
used to provide an INITRD image.

If you do not need graphical output, you can disable it and redirect the
virtual serial port and the QEMU monitor to the console with the
-nographic option. The typical command line is:

qemu-system-x86_64 -kernel bzImage -hda rootdisk.img -append "root=/dev/hda console=ttyS0" -nographic

Use Ctrl-a c to switch between the serial console and the monitor (see
Keys in the graphical frontends).

VNC security

The VNC server capability provides access to the graphical console of
the guest VM across the network. This has a number of security
considerations depending on the deployment scenarios.

Without passwords

The simplest VNC server setup does not include any form of
authentication. For this setup it is recommended to restrict it to
listen on a UNIX domain socket only. For example

qemu-system-x86_64 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc

This ensures that only users on local box with read/write access to that
path can access the VNC server. To securely access the VNC server from a
remote machine, a combination of netcat+ssh can be used to provide a
secure tunnel.

With passwords

The VNC protocol has limited support for password based authentication.
Since the protocol limits passwords to 8 characters it should not be
considered to provide high security. The password can be fairly easily
brute-forced by a client making repeat connections. For this reason, a
VNC server using password authentication should be restricted to only
listen on the loopback interface or UNIX domain sockets. Password
authentication is not supported when operating in FIPS 140-2 compliance
mode as it requires the use of the DES cipher. Password authentication
is requested with the password option, and then once QEMU is running
the password is set with the monitor. Until the monitor is used to set
the password all clients will be rejected.

qemu-system-x86_64 [...OPTIONS...] -vnc :1,password -monitor stdio
(qemu) change vnc password
Password: ****
(qemu)

With x509 certificates

The QEMU VNC server also implements the VeNCrypt extension allowing use
of TLS for encryption of the session, and x509 certificates for
authentication. The use of x509 certificates is strongly recommended,
because TLS on its own is susceptible to man-in-the-middle attacks.
Basic x509 certificate support provides a secure session, but no
authentication. This allows any client to connect, and provides an
encrypted session.

qemu-system-x86_64 [...OPTIONS...] -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no -vnc :1,tls-creds=tls0 -monitor stdio

In the above example /etc/pki/qemu should contain at least three
files, ca-cert.pem, server-cert.pem and server-key.pem.
Unprivileged users will want to use a private directory, for example
$HOME/.pki/qemu. NB the server-key.pem file should be protected
with file mode 0600 to only be readable by the user owning it.

With x509 certificates and client verification

Certificates can also provide a means to authenticate the client
connecting. The server will request that the client provide a
certificate, which it will then validate against the CA certificate.
This is a good choice if deploying in an environment with a private
internal certificate authority. It uses the same syntax as previously,
but with verify-peer set to yes instead.

qemu-system-x86_64 [...OPTIONS...] -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes -vnc :1,tls-creds=tls0 -monitor stdio

With x509 certificates, client verification and passwords

Finally, the previous method can be combined with VNC password
authentication to provide two layers of authentication for clients.

qemu-system-x86_64 [...OPTIONS...] -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes -vnc :1,tls-creds=tls0,password -monitor stdio
(qemu) change vnc password
Password: ****
(qemu)

With SASL authentication

The SASL authentication method is a VNC extension, that provides an
easily extendable, pluggable authentication method. This allows for
integration with a wide range of authentication mechanisms, such as PAM,
GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. The
strength of the authentication depends on the exact mechanism
configured. If the chosen mechanism also provides a SSF layer, then it
will encrypt the datastream as well.

Refer to the later docs on how to choose the exact SASL mechanism used
for authentication, but assuming use of one supporting SSF, then QEMU
can be launched with:

qemu-system-x86_64 [...OPTIONS...] -vnc :1,sasl -monitor stdio

With x509 certificates and SASL authentication

If the desired SASL authentication mechanism does not supported SSF
layers, then it is strongly advised to run it in combination with TLS
and x509 certificates. This provides securely encrypted data stream,
avoiding risk of compromising of the security credentials. This can be
enabled, by combining the ‘sasl’ option with the aforementioned TLS +
x509 options:

qemu-system-x86_64 [...OPTIONS...] -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes -vnc :1,tls-creds=tls0,sasl -monitor stdio

Configuring SASL mechanisms

The following documentation assumes use of the Cyrus SASL implementation
on a Linux host, but the principles should apply to any other SASL
implementation or host. When SASL is enabled, the mechanism
configuration will be loaded from system default SASL service config
/etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an
environment variable SASL_CONF_PATH can be used to make it search
alternate locations for the service config file.

If the TLS option is enabled for VNC, then it will provide session
encryption, otherwise the SASL mechanism will have to provide
encryption. In the latter case the list of possible plugins that can be
used is drastically reduced. In fact only the GSSAPI SASL mechanism
provides an acceptable level of security by modern standards. Previous
versions of QEMU referred to the DIGEST-MD5 mechanism, however, it has
multiple serious flaws described in detail in RFC 6331 and thus should
never be used any more. The SCRAM-SHA-1 mechanism provides a simple
username/password auth facility similar to DIGEST-MD5, but does not
support session encryption, so can only be used in combination with TLS.

When not using TLS the recommended configuration is

mech_list: gssapi
keytab: /etc/qemu/krb5.tab

This says to use the ‘GSSAPI’ mechanism with the Kerberos v5 protocol,
with the server principal stored in /etc/qemu/krb5.tab. For this to work
the administrator of your KDC must generate a Kerberos principal for the
server, with a name of ‘qemu/somehost.example.com@EXAMPLE.COM’ replacing
‘somehost.example.com’ with the fully qualified host name of the machine
running QEMU, and ‘EXAMPLE.COM’ with the Kerberos Realm.

When using TLS, if username+password authentication is desired, then a
reasonable configuration is

mech_list: scram-sha-1
sasldb_path: /etc/qemu/passwd.db

The saslpasswd2 program can be used to populate the passwd.db
file with accounts.

Other SASL configurations will be left as an exercise for the reader.
Note that all mechanisms, except GSSAPI, should be combined with use of
TLS to ensure a secure data channel.

TLS setup for network services

Almost all network services in QEMU have the ability to use TLS for
session data encryption, along with x509 certificates for simple client
authentication. What follows is a description of how to generate
certificates suitable for usage with QEMU, and applies to the VNC
server, character devices with the TCP backend, NBD server and client,
and migration server and client.

At a high level, QEMU requires certificates and private keys to be
provided in PEM format. Aside from the core fields, the certificates
should include various extension data sets, including v3 basic
constraints data, key purpose, key usage and subject alt name.

The GnuTLS package includes a command called certtool which can be
used to easily generate certificates and keys in the required format
with expected data present. Alternatively a certificate management
service may be used.

At a minimum it is necessary to setup a certificate authority, and issue
certificates to each server. If using x509 certificates for
authentication, then each client will also need to be issued a
certificate.

Assuming that the QEMU network services will only ever be exposed to
clients on a private intranet, there is no need to use a commercial
certificate authority to create certificates. A self-signed CA is
sufficient, and in fact likely to be more secure since it removes the
ability of malicious 3rd parties to trick the CA into mis-issuing certs
for impersonating your services. The only likely exception where a
commercial CA might be desirable is if enabling the VNC websockets
server and exposing it directly to remote browser clients. In such a
case it might be useful to use a commercial CA to avoid needing to
install custom CA certs in the web browsers.

The recommendation is for the server to keep its certificates in either
/etc/pki/qemu or for unprivileged users in $HOME/.pki/qemu.

Setup the Certificate Authority

This step only needs to be performed once per organization /
organizational unit. First the CA needs a private key. This key must be
kept VERY secret and secure. If this key is compromised the entire trust
chain of the certificates issued with it is lost.

certtool --generate-privkey > ca-key.pem

To generate a self-signed certificate requires one core piece of
information, the name of the organization. A template file ca.info
should be populated with the desired data to avoid having to deal with
interactive prompts from certtool:

cat > ca.info <<EOF
cn = Name of your organization
ca
cert_signing_key
EOF
certtool --generate-self-signed \
 --load-privkey ca-key.pem
 --template ca.info \
 --outfile ca-cert.pem

The ca keyword in the template sets the v3 basic constraints
extension to indicate this certificate is for a CA, while
cert_signing_key sets the key usage extension to indicate this will
be used for signing other keys. The generated ca-cert.pem file
should be copied to all servers and clients wishing to utilize TLS
support in the VNC server. The ca-key.pem must not be
disclosed/copied anywhere except the host responsible for issuing
certificates.

Issuing server certificates

Each server (or host) needs to be issued with a key and certificate.
When connecting the certificate is sent to the client which validates it
against the CA certificate. The core pieces of information for a server
certificate are the hostnames and/or IP addresses that will be used by
clients when connecting. The hostname / IP address that the client
specifies when connecting will be validated against the hostname(s) and
IP address(es) recorded in the server certificate, and if no match is
found the client will close the connection.

Thus it is recommended that the server certificate include both the
fully qualified and unqualified hostnames. If the server will have
permanently assigned IP address(es), and clients are likely to use them
when connecting, they may also be included in the certificate. Both IPv4
and IPv6 addresses are supported. Historically certificates only
included 1 hostname in the CN field, however, usage of this field
for validation is now deprecated. Instead modern TLS clients will
validate against the Subject Alt Name extension data, which allows for
multiple entries. In the future usage of the CN field may be
discontinued entirely, so providing SAN extension data is strongly
recommended.

On the host holding the CA, create template files containing the
information for each server, and use it to issue server certificates.

cat > server-hostNNN.info <<EOF
organization = Name of your organization
cn = hostNNN.foo.example.com
dns_name = hostNNN
dns_name = hostNNN.foo.example.com
ip_address = 10.0.1.87
ip_address = 192.8.0.92
ip_address = 2620:0:cafe::87
ip_address = 2001:24::92
tls_www_server
encryption_key
signing_key
EOF
certtool --generate-privkey > server-hostNNN-key.pem
certtool --generate-certificate \
 --load-ca-certificate ca-cert.pem \
 --load-ca-privkey ca-key.pem \
 --load-privkey server-hostNNN-key.pem \
 --template server-hostNNN.info \
 --outfile server-hostNNN-cert.pem

The dns_name and ip_address fields in the template are setting
the subject alt name extension data. The tls_www_server keyword is
the key purpose extension to indicate this certificate is intended for
usage in a web server. Although QEMU network services are not in fact
HTTP servers (except for VNC websockets), setting this key purpose is
still recommended. The encryption_key and signing_key keyword is
the key usage extension to indicate this certificate is intended for
usage in the data session.

The server-hostNNN-key.pem and server-hostNNN-cert.pem files
should now be securely copied to the server for which they were
generated, and renamed to server-key.pem and server-cert.pem
when added to the /etc/pki/qemu directory on the target host. The
server-key.pem file is security sensitive and should be kept
protected with file mode 0600 to prevent disclosure.

Issuing client certificates

The QEMU x509 TLS credential setup defaults to enabling client
verification using certificates, providing a simple authentication
mechanism. If this default is used, each client also needs to be issued
a certificate. The client certificate contains enough metadata to
uniquely identify the client with the scope of the certificate
authority. The client certificate would typically include fields for
organization, state, city, building, etc.

Once again on the host holding the CA, create template files containing
the information for each client, and use it to issue client
certificates.

cat > client-hostNNN.info <<EOF
country = GB
state = London
locality = City Of London
organization = Name of your organization
cn = hostNNN.foo.example.com
tls_www_client
encryption_key
signing_key
EOF
certtool --generate-privkey > client-hostNNN-key.pem
certtool --generate-certificate \
 --load-ca-certificate ca-cert.pem \
 --load-ca-privkey ca-key.pem \
 --load-privkey client-hostNNN-key.pem \
 --template client-hostNNN.info \
 --outfile client-hostNNN-cert.pem

The subject alt name extension data is not required for clients, so the
the dns_name and ip_address fields are not included. The
tls_www_client keyword is the key purpose extension to indicate this
certificate is intended for usage in a web client. Although QEMU network
clients are not in fact HTTP clients, setting this key purpose is still
recommended. The encryption_key and signing_key keyword is the
key usage extension to indicate this certificate is intended for usage
in the data session.

The client-hostNNN-key.pem and client-hostNNN-cert.pem files
should now be securely copied to the client for which they were
generated, and renamed to client-key.pem and client-cert.pem
when added to the /etc/pki/qemu directory on the target host. The
client-key.pem file is security sensitive and should be kept
protected with file mode 0600 to prevent disclosure.

If a single host is going to be using TLS in both a client and server
role, it is possible to create a single certificate to cover both roles.
This would be quite common for the migration and NBD services, where a
QEMU process will be started by accepting a TLS protected incoming
migration, and later itself be migrated out to another host. To generate
a single certificate, simply include the template data from both the
client and server instructions in one.

cat > both-hostNNN.info <<EOF
country = GB
state = London
locality = City Of London
organization = Name of your organization
cn = hostNNN.foo.example.com
dns_name = hostNNN
dns_name = hostNNN.foo.example.com
ip_address = 10.0.1.87
ip_address = 192.8.0.92
ip_address = 2620:0:cafe::87
ip_address = 2001:24::92
tls_www_server
tls_www_client
encryption_key
signing_key
EOF
certtool --generate-privkey > both-hostNNN-key.pem
certtool --generate-certificate \
 --load-ca-certificate ca-cert.pem \
 --load-ca-privkey ca-key.pem \
 --load-privkey both-hostNNN-key.pem \
 --template both-hostNNN.info \
 --outfile both-hostNNN-cert.pem

When copying the PEM files to the target host, save them twice, once as
server-cert.pem and server-key.pem, and again as
client-cert.pem and client-key.pem.

TLS x509 credential configuration

QEMU has a standard mechanism for loading x509 credentials that will be
used for network services and clients. It requires specifying the
tls-creds-x509 class name to the --object command line argument
for the system emulators. Each set of credentials loaded should be given
a unique string identifier via the id parameter. A single set of TLS
credentials can be used for multiple network backends, so VNC,
migration, NBD, character devices can all share the same credentials.
Note, however, that credentials for use in a client endpoint must be
loaded separately from those used in a server endpoint.

When specifying the object, the dir parameters specifies which
directory contains the credential files. This directory is expected to
contain files with the names mentioned previously, ca-cert.pem,
server-key.pem, server-cert.pem, client-key.pem and
client-cert.pem as appropriate. It is also possible to include a set
of pre-generated Diffie-Hellman (DH) parameters in a file
dh-params.pem, which can be created using the
certtool --generate-dh-params command. If omitted, QEMU will
dynamically generate DH parameters when loading the credentials.

The endpoint parameter indicates whether the credentials will be
used for a network client or server, and determines which PEM files are
loaded.

The verify parameter determines whether x509 certificate validation
should be performed. This defaults to enabled, meaning clients will
always validate the server hostname against the certificate subject alt
name fields and/or CN field. It also means that servers will request
that clients provide a certificate and validate them. Verification
should never be turned off for client endpoints, however, it may be
turned off for server endpoints if an alternative mechanism is used to
authenticate clients. For example, the VNC server can use SASL to
authenticate clients instead.

To load server credentials with client certificate validation enabled

qemu-system-x86_64 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server

while to load client credentials use

qemu-system-x86_64 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client

Network services which support TLS will all have a tls-creds
parameter which expects the ID of the TLS credentials object. For
example with VNC:

qemu-system-x86_64 -vnc 0.0.0.0:0,tls-creds=tls0

TLS Pre-Shared Keys (PSK)

Instead of using certificates, you may also use TLS Pre-Shared Keys
(TLS-PSK). This can be simpler to set up than certificates but is less
scalable.

Use the GnuTLS psktool program to generate a keys.psk file
containing one or more usernames and random keys:

mkdir -m 0700 /tmp/keys
psktool -u rich -p /tmp/keys/keys.psk

TLS-enabled servers such as qemu-nbd can use this directory like so:

qemu-nbd \
 -t -x / \
 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
 --tls-creds tls0 \
 image.qcow2

When connecting from a qemu-based client you must specify the directory
containing keys.psk and an optional username (defaults to “qemu”):

qemu-img info \
 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
 --image-opts \
 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/

GDB usage

QEMU has a primitive support to work with gdb, so that you can do
‘Ctrl-C’ while the virtual machine is running and inspect its state.

In order to use gdb, launch QEMU with the ‘-s’ option. It will wait for
a gdb connection:

qemu-system-x86_64 -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
Connected to host network interface: tun0
Waiting gdb connection on port 1234

Then launch gdb on the ‘vmlinux’ executable:

> gdb vmlinux

In gdb, connect to QEMU:

(gdb) target remote localhost:1234

Then you can use gdb normally. For example, type ‘c’ to launch the
kernel:

(gdb) c

Here are some useful tips in order to use gdb on system code:

	Use info reg to display all the CPU registers.

	Use x/10i $eip to display the code at the PC position.

	Use set architecture i8086 to dump 16 bit code. Then use
x/10i $cs*16+$eip to dump the code at the PC position.

Advanced debugging options:

The default single stepping behavior is step with the IRQs and timer
service routines off. It is set this way because when gdb executes a
single step it expects to advance beyond the current instruction. With
the IRQs and timer service routines on, a single step might jump into
the one of the interrupt or exception vectors instead of executing the
current instruction. This means you may hit the same breakpoint a number
of times before executing the instruction gdb wants to have executed.
Because there are rare circumstances where you want to single step into
an interrupt vector the behavior can be controlled from GDB. There are
three commands you can query and set the single step behavior:

	maintenance packet qqemu.sstepbits

	This will display the MASK bits used to control the single stepping
IE:

(gdb) maintenance packet qqemu.sstepbits
sending: "qqemu.sstepbits"
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"

	maintenance packet qqemu.sstep

	This will display the current value of the mask used when single
stepping IE:

(gdb) maintenance packet qqemu.sstep
sending: "qqemu.sstep"
received: "0x7"

	maintenance packet Qqemu.sstep=HEX_VALUE

	This will change the single step mask, so if wanted to enable IRQs on
the single step, but not timers, you would use:

(gdb) maintenance packet Qqemu.sstep=0x5
sending: "qemu.sstep=0x5"
received: "OK"

Managed start up options

In system mode emulation, it’s possible to create a VM in a paused
state using the -S command line option. In this state the machine
is completely initialized according to command line options and ready
to execute VM code but VCPU threads are not executing any code. The VM
state in this paused state depends on the way QEMU was started. It
could be in:

	initial state (after reset/power on state)

	with direct kernel loading, the initial state could be amended to execute
code loaded by QEMU in the VM’s RAM and with incoming migration

	with incoming migration, initial state will be amended with the migrated
machine state after migration completes

This paused state is typically used by users to query machine state and/or
additionally configure the machine (by hotplugging devices) in runtime before
allowing VM code to run.

However, at the -S pause point, it’s impossible to configure options
that affect initial VM creation (like: -smp/-m/-numa …) or
cold plug devices. The experimental --preconfig command line option
allows pausing QEMU before the initial VM creation, in a “preconfig” state,
where additional queries and configuration can be performed via QMP
before moving on to the resulting configuration startup. In the
preconfig state, QEMU only allows a limited set of commands over the
QMP monitor, where the commands do not depend on an initialized
machine, including but not limited to:

	qmp_capabilities

	query-qmp-schema

	query-commands

	query-status

	x-exit-preconfig

QEMU System Emulator Targets

QEMU is a generic emulator and it emulates many machines. Most of the
options are similar for all machines. Specific information about the
various targets are mentioned in the following sections.

Contents:

	x86 (PC) System emulator
	Peripherals

	Recommendations for KVM CPU model configuration on x86 hosts
	Two ways to configure CPU models with QEMU / KVM

	Preferred CPU models for Intel x86 hosts

	Important CPU features for Intel x86 hosts

	Preferred CPU models for AMD x86 hosts

	Important CPU features for AMD x86 hosts

	Default x86 CPU models

	Other non-recommended x86 CPUs

	Syntax for configuring CPU models
	QEMU command line

	Libvirt guest XML

	OS requirements

	PowerPC System emulator

	Sparc32 System emulator

	Sparc64 System emulator

	MIPS System emulator
	Supported CPU model configurations on MIPS hosts
	Supported CPU models for MIPS32 hosts

	Supported CPU models for MIPS64 hosts

	Supported CPU models for nanoMIPS hosts

	Preferred CPU models for MIPS hosts

	nanoMIPS System emulator

	ARM System emulator

	ColdFire System emulator

	Xtensa System emulator

x86 (PC) System emulator

Peripherals

The QEMU PC System emulator simulates the following peripherals:

	i440FX host PCI bridge and PIIX3 PCI to ISA bridge

	Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
extensions (hardware level, including all non standard modes).

	PS/2 mouse and keyboard

	2 PCI IDE interfaces with hard disk and CD-ROM support

	Floppy disk

	PCI and ISA network adapters

	Serial ports

	IPMI BMC, either and internal or external one

	Creative SoundBlaster 16 sound card

	ENSONIQ AudioPCI ES1370 sound card

	Intel 82801AA AC97 Audio compatible sound card

	Intel HD Audio Controller and HDA codec

	Adlib (OPL2) - Yamaha YM3812 compatible chip

	Gravis Ultrasound GF1 sound card

	CS4231A compatible sound card

	PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1
hub.

SMP is supported with up to 255 CPUs.

QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
VGA BIOS.

QEMU uses YM3812 emulation by Tatsuyuki Satoh.

QEMU uses GUS emulation (GUSEMU32 http://www.deinmeister.de/gusemu/) by
Tibor “TS” Schütz.

Note that, by default, GUS shares IRQ(7) with parallel ports and so QEMU
must be told to not have parallel ports to have working GUS.

qemu_system-x86_64 dos.img -soundhw gus -parallel none

Alternatively:

qemu_system-x86_64 dos.img -device gus,irq=5

Or some other unclaimed IRQ.

CS4231A is the chip used in Windows Sound System and GUSMAX products

Recommendations for KVM CPU model configuration on x86 hosts

The information that follows provides recommendations for configuring
CPU models on x86 hosts. The goals are to maximise performance, while
protecting guest OS against various CPU hardware flaws, and optionally
enabling live migration between hosts with heterogeneous CPU models.

Two ways to configure CPU models with QEMU / KVM

	Host passthrough

This passes the host CPU model features, model, stepping, exactly to
the guest. Note that KVM may filter out some host CPU model features
if they cannot be supported with virtualization. Live migration is
unsafe when this mode is used as libvirt / QEMU cannot guarantee a
stable CPU is exposed to the guest across hosts. This is the
recommended CPU to use, provided live migration is not required.

	Named model

QEMU comes with a number of predefined named CPU models, that
typically refer to specific generations of hardware released by
Intel and AMD. These allow the guest VMs to have a degree of
isolation from the host CPU, allowing greater flexibility in live
migrating between hosts with differing hardware. @end table

In both cases, it is possible to optionally add or remove individual CPU
features, to alter what is presented to the guest by default.

Libvirt supports a third way to configure CPU models known as “Host
model”. This uses the QEMU “Named model” feature, automatically picking
a CPU model that is similar the host CPU, and then adding extra features
to approximate the host model as closely as possible. This does not
guarantee the CPU family, stepping, etc will precisely match the host
CPU, as they would with “Host passthrough”, but gives much of the
benefit of passthrough, while making live migration safe.

Preferred CPU models for Intel x86 hosts

The following CPU models are preferred for use on Intel hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	Skylake-Server, Skylake-Server-IBRS

	Intel Xeon Processor (Skylake, 2016)

	Skylake-Client, Skylake-Client-IBRS

	Intel Core Processor (Skylake, 2015)

	Broadwell, Broadwell-IBRS, Broadwell-noTSX, Broadwell-noTSX-IBRS

	Intel Core Processor (Broadwell, 2014)

	Haswell, Haswell-IBRS, Haswell-noTSX, Haswell-noTSX-IBRS

	Intel Core Processor (Haswell, 2013)

	IvyBridge, IvyBridge-IBR

	Intel Xeon E3-12xx v2 (Ivy Bridge, 2012)

	SandyBridge, SandyBridge-IBRS

	Intel Xeon E312xx (Sandy Bridge, 2011)

	Westmere, Westmere-IBRS

	Westmere E56xx/L56xx/X56xx (Nehalem-C, 2010)

	Nehalem, Nehalem-IBRS

	Intel Core i7 9xx (Nehalem Class Core i7, 2008)

	Penryn

	Intel Core 2 Duo P9xxx (Penryn Class Core 2, 2007)

	Conroe

	Intel Celeron_4x0 (Conroe/Merom Class Core 2, 2006)

Important CPU features for Intel x86 hosts

The following are important CPU features that should be used on Intel
x86 hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using “Host passthrough” or “Host model”.

	pcid

	Recommended to mitigate the cost of the Meltdown (CVE-2017-5754) fix.

Included by default in Haswell, Broadwell & Skylake Intel CPU models.

Should be explicitly turned on for Westmere, SandyBridge, and
IvyBridge Intel CPU models. Note that some desktop/mobile Westmere
CPUs cannot support this feature.

	spec-ctrl

	Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in Intel CPU models with -IBRS suffix.

Must be explicitly turned on for Intel CPU models without -IBRS
suffix.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	stibp

	Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it can
be used for guest CPUs.

	ssbd

	Required to enable the CVE-2018-3639 fix.

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	pdpe1gb

	Recommended to allow guest OS to use 1GB size pages.

Not included by default in any Intel CPU model.

Should be explicitly turned on for all Intel CPU models.

Note that not all CPU hardware will support this feature.

	md-clear

	Required to confirm the MDS (CVE-2018-12126, CVE-2018-12127,
CVE-2018-12130, CVE-2019-11091) fixes.

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

Preferred CPU models for AMD x86 hosts

The following CPU models are preferred for use on Intel hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	EPYC, EPYC-IBPB

	AMD EPYC Processor (2017)

	Opteron_G5

	AMD Opteron 63xx class CPU (2012)

	Opteron_G4

	AMD Opteron 62xx class CPU (2011)

	Opteron_G3

	AMD Opteron 23xx (Gen 3 Class Opteron, 2009)

	Opteron_G2

	AMD Opteron 22xx (Gen 2 Class Opteron, 2006)

	Opteron_G1

	AMD Opteron 240 (Gen 1 Class Opteron, 2004)

Important CPU features for AMD x86 hosts

The following are important CPU features that should be used on AMD x86
hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using “Host passthrough” or “Host model”.

	ibpb

	Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in AMD CPU models with -IBPB suffix.

Must be explicitly turned on for AMD CPU models without -IBPB suffix.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	stibp

	Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.

Must be explicitly turned on for all AMD CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	virt-ssbd

	Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This should be provided to guests, even if amd-ssbd is also provided,
for maximum guest compatibility.

Note for some QEMU / libvirt versions, this must be force enabled when
when using “Host model”, because this is a virtual feature that
doesn’t exist in the physical host CPUs.

	amd-ssbd

	Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This provides higher performance than virt-ssbd so should be
exposed to guests whenever available in the host. virt-ssbd should
none the less also be exposed for maximum guest compatibility as some
kernels only know about virt-ssbd.

	amd-no-ssb

	Recommended to indicate the host is not vulnerable CVE-2018-3639

Not included by default in any AMD CPU model.

Future hardware generations of CPU will not be vulnerable to
CVE-2018-3639, and thus the guest should be told not to enable
its mitigations, by exposing amd-no-ssb. This is mutually
exclusive with virt-ssbd and amd-ssbd.

	pdpe1gb

	Recommended to allow guest OS to use 1GB size pages

Not included by default in any AMD CPU model.

Should be explicitly turned on for all AMD CPU models.

Note that not all CPU hardware will support this feature.

Default x86 CPU models

The default QEMU CPU models are designed such that they can run on all
hosts. If an application does not wish to do perform any host
compatibility checks before launching guests, the default is guaranteed
to work.

The default CPU models will, however, leave the guest OS vulnerable to
various CPU hardware flaws, so their use is strongly discouraged.
Applications should follow the earlier guidance to setup a better CPU
configuration, with host passthrough recommended if live migration is
not needed.

	qemu32, qemu64

	QEMU Virtual CPU version 2.5+ (32 & 64 bit variants)

qemu64 is used for x86_64 guests and qemu32 is used for i686
guests, when no -cpu argument is given to QEMU, or no <cpu> is
provided in libvirt XML.

Other non-recommended x86 CPUs

The following CPUs models are compatible with most AMD and Intel x86
hosts, but their usage is discouraged, as they expose a very limited
featureset, which prevents guests having optimal performance.

	kvm32, kvm64

	Common KVM processor (32 & 64 bit variants).

Legacy models just for historical compatibility with ancient QEMU
versions.

	486, athlon, phenom, coreduo, core2duo, n270, pentium, pentium2, pentium3

	Various very old x86 CPU models, mostly predating the introduction
of hardware assisted virtualization, that should thus not be
required for running virtual machines.

Syntax for configuring CPU models

The examples below illustrate the approach to configuring the various
CPU models / features in QEMU and libvirt.

QEMU command line

Host passthrough:

qemu-system-x86_64 -cpu host

Host passthrough with feature customization:

qemu-system-x86_64 -cpu host,-vmx,...

Named CPU models:

qemu-system-x86_64 -cpu Westmere

Named CPU models with feature customization:

qemu-system-x86_64 -cpu Westmere,+pcid,...

Libvirt guest XML

Host passthrough:

<cpu mode='host-passthrough'/>

Host passthrough with feature customization:

<cpu mode='host-passthrough'>
 <feature name="vmx" policy="disable"/>
 ...
</cpu>

Host model:

<cpu mode='host-model'/>

Host model with feature customization:

<cpu mode='host-model'>
 <feature name="vmx" policy="disable"/>
 ...
</cpu>

Named model:

<cpu mode='custom'>
 <model name="Westmere"/>
</cpu>

Named model with feature customization:

<cpu mode='custom'>
 <model name="Westmere"/>
 <feature name="pcid" policy="require"/>
 ...
</cpu>

OS requirements

On x86_64 hosts, the default set of CPU features enabled by the KVM
accelerator require the host to be running Linux v4.5 or newer. Red Hat
Enterprise Linux 7 is also supported, since the required
functionality was backported.

PowerPC System emulator

Use the executable qemu-system-ppc to simulate a complete 40P (PREP)
or PowerMac PowerPC system.

QEMU emulates the following PowerMac peripherals:

	UniNorth or Grackle PCI Bridge

	PCI VGA compatible card with VESA Bochs Extensions

	2 PMAC IDE interfaces with hard disk and CD-ROM support

	NE2000 PCI adapters

	Non Volatile RAM

	VIA-CUDA with ADB keyboard and mouse.

QEMU emulates the following 40P (PREP) peripherals:

	PCI Bridge

	PCI VGA compatible card with VESA Bochs Extensions

	2 IDE interfaces with hard disk and CD-ROM support

	Floppy disk

	PCnet network adapters

	Serial port

	PREP Non Volatile RAM

	PC compatible keyboard and mouse.

Since version 0.9.1, QEMU uses OpenBIOS https://www.openbios.org/ for
the g3beige and mac99 PowerMac and the 40p machines. OpenBIOS is a free
(GPL v2) portable firmware implementation. The goal is to implement a
100% IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.

More information is available at
http://perso.magic.fr/l_indien/qemu-ppc/.

Sparc32 System emulator

Use the executable qemu-system-sparc to simulate the following Sun4m
architecture machines:

	SPARCstation 4

	SPARCstation 5

	SPARCstation 10

	SPARCstation 20

	SPARCserver 600MP

	SPARCstation LX

	SPARCstation Voyager

	SPARCclassic

	SPARCbook

The emulation is somewhat complete. SMP up to 16 CPUs is supported, but
Linux limits the number of usable CPUs to 4.

QEMU emulates the following sun4m peripherals:

	IOMMU

	TCX or cgthree Frame buffer

	Lance (Am7990) Ethernet

	Non Volatile RAM M48T02/M48T08

	Slave I/O: timers, interrupt controllers, Zilog serial ports,
keyboard and power/reset logic

	ESP SCSI controller with hard disk and CD-ROM support

	Floppy drive (not on SS-600MP)

	CS4231 sound device (only on SS-5, not working yet)

The number of peripherals is fixed in the architecture. Maximum memory
size depends on the machine type, for SS-5 it is 256MB and for others
2047MB.

Since version 0.8.2, QEMU uses OpenBIOS https://www.openbios.org/.
OpenBIOS is a free (GPL v2) portable firmware implementation. The goal
is to implement a 100% IEEE 1275-1994 (referred to as Open Firmware)
compliant firmware.

A sample Linux 2.6 series kernel and ram disk image are available on the
QEMU web site. There are still issues with NetBSD and OpenBSD, but most
kernel versions work. Please note that currently older Solaris kernels
don’t work probably due to interface issues between OpenBIOS and
Solaris.

Sparc64 System emulator

Use the executable qemu-system-sparc64 to simulate a Sun4u
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
Niagara (T1) machine. The Sun4u emulator is mostly complete, being able
to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
Sun4v emulator is still a work in progress.

The Niagara T1 emulator makes use of firmware and OS binaries supplied
in the S10image/ directory of the OpenSPARC T1 project
http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2
and is able to boot the disk.s10hw2 Solaris image.

qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
 -nographic -m 256 \
 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2

QEMU emulates the following peripherals:

	UltraSparc IIi APB PCI Bridge

	PCI VGA compatible card with VESA Bochs Extensions

	PS/2 mouse and keyboard

	Non Volatile RAM M48T59

	PC-compatible serial ports

	2 PCI IDE interfaces with hard disk and CD-ROM support

	Floppy disk

MIPS System emulator

Four executables cover simulation of 32 and 64-bit MIPS systems in both
endian options, qemu-system-mips, qemu-system-mipsel
qemu-system-mips64 and qemu-system-mips64el. Five different
machine types are emulated:

	A generic ISA PC-like machine “mips”

	The MIPS Malta prototype board “malta”

	An ACER Pica “pica61”. This machine needs the 64-bit emulator.

	MIPS emulator pseudo board “mipssim”

	A MIPS Magnum R4000 machine “magnum”. This machine needs the
64-bit emulator.

The generic emulation is supported by Debian ‘Etch’ and is able to
install Debian into a virtual disk image. The following devices are
emulated:

	A range of MIPS CPUs, default is the 24Kf

	PC style serial port

	PC style IDE disk

	NE2000 network card

The Malta emulation supports the following devices:

	Core board with MIPS 24Kf CPU and Galileo system controller

	PIIX4 PCI/USB/SMbus controller

	The Multi-I/O chip’s serial device

	PCI network cards (PCnet32 and others)

	Malta FPGA serial device

	Cirrus (default) or any other PCI VGA graphics card

The Boston board emulation supports the following devices:

	Xilinx FPGA, which includes a PCIe root port and an UART

	Intel EG20T PCH connects the I/O peripherals, but only the SATA bus
is emulated

The ACER Pica emulation supports:

	MIPS R4000 CPU

	PC-style IRQ and DMA controllers

	PC Keyboard

	IDE controller

The MIPS Magnum R4000 emulation supports:

	MIPS R4000 CPU

	PC-style IRQ controller

	PC Keyboard

	SCSI controller

	G364 framebuffer

The Fulong 2E emulation supports:

	Loongson 2E CPU

	Bonito64 system controller as North Bridge

	VT82C686 chipset as South Bridge

	RTL8139D as a network card chipset

The mipssim pseudo board emulation provides an environment similar to
what the proprietary MIPS emulator uses for running Linux. It supports:

	A range of MIPS CPUs, default is the 24Kf

	PC style serial port

	MIPSnet network emulation

Supported CPU model configurations on MIPS hosts

QEMU supports variety of MIPS CPU models:

Supported CPU models for MIPS32 hosts

The following CPU models are supported for use on MIPS32 hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	mips32r6-generic

	MIPS32 Processor (Release 6, 2015)

	P5600

	MIPS32 Processor (P5600, 2014)

	M14K, M14Kc

	MIPS32 Processor (M14K, 2009)

	74Kf

	MIPS32 Processor (74K, 2007)

	34Kf

	MIPS32 Processor (34K, 2006)

	24Kc, 24KEc, 24Kf

	MIPS32 Processor (24K, 2003)

	4Kc, 4Km, 4KEcR1, 4KEmR1, 4KEc, 4KEm

	MIPS32 Processor (4K, 1999)

Supported CPU models for MIPS64 hosts

The following CPU models are supported for use on MIPS64 hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	I6400

	MIPS64 Processor (Release 6, 2014)

	Loongson-2F

	MIPS64 Processor (Loongson 2, 2008)

	Loongson-2E

	MIPS64 Processor (Loongson 2, 2006)

	mips64dspr2

	MIPS64 Processor (Release 2, 2006)

	MIPS64R2-generic, 5KEc, 5KEf

	MIPS64 Processor (Release 2, 2002)

	20Kc

	MIPS64 Processor (20K, 2000

	5Kc, 5Kf

	MIPS64 Processor (5K, 1999)

	VR5432

	MIPS64 Processor (VR, 1998)

	R4000

	MIPS64 Processor (MIPS III, 1991)

Supported CPU models for nanoMIPS hosts

The following CPU models are supported for use on nanoMIPS hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	I7200

	MIPS I7200 (nanoMIPS, 2018)

Preferred CPU models for MIPS hosts

The following CPU models are preferred for use on different MIPS hosts:

	MIPS III

	R4000

	MIPS32R2

	34Kf

	MIPS64R6

	I6400

	nanoMIPS

	I7200

nanoMIPS System emulator

Executable qemu-system-mipsel also covers simulation of 32-bit
nanoMIPS system in little endian mode:

	nanoMIPS I7200 CPU

Example of qemu-system-mipsel usage for nanoMIPS is shown below:

Download <disk_image_file> from
https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html.

Download <kernel_image_file> from
https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html.

Start system emulation of Malta board with nanoMIPS I7200 CPU:

qemu-system-mipsel -cpu I7200 -kernel <kernel_image_file> \
 -M malta -serial stdio -m <memory_size> -hda <disk_image_file> \
 -append "mem=256m@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"

ARM System emulator

Use the executable qemu-system-arm to simulate a ARM machine. The
ARM Integrator/CP board is emulated with the following devices:

	ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU

	Two PL011 UARTs

	SMC 91c111 Ethernet adapter

	PL110 LCD controller

	PL050 KMI with PS/2 keyboard and mouse.

	PL181 MultiMedia Card Interface with SD card.

The ARM Versatile baseboard is emulated with the following devices:

	ARM926E, ARM1136 or Cortex-A8 CPU

	PL190 Vectored Interrupt Controller

	Four PL011 UARTs

	SMC 91c111 Ethernet adapter

	PL110 LCD controller

	PL050 KMI with PS/2 keyboard and mouse.

	PCI host bridge. Note the emulated PCI bridge only provides access
to PCI memory space. It does not provide access to PCI IO space. This
means some devices (eg. ne2k_pci NIC) are not usable, and others (eg.
rtl8139 NIC) are only usable when the guest drivers use the memory
mapped control registers.

	PCI OHCI USB controller.

	LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM
devices.

	PL181 MultiMedia Card Interface with SD card.

Several variants of the ARM RealView baseboard are emulated, including
the EB, PB-A8 and PBX-A9. Due to interactions with the bootloader, only
certain Linux kernel configurations work out of the box on these boards.

Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
disabled and expect 1024M RAM.

The following devices are emulated:

	ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU

	ARM AMBA Generic/Distributed Interrupt Controller

	Four PL011 UARTs

	SMC 91c111 or SMSC LAN9118 Ethernet adapter

	PL110 LCD controller

	PL050 KMI with PS/2 keyboard and mouse

	PCI host bridge

	PCI OHCI USB controller

	LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM
devices

	PL181 MultiMedia Card Interface with SD card.

The XScale-based clamshell PDA models (“Spitz”, “Akita”, “Borzoi”
and “Terrier”) emulation includes the following peripherals:

	Intel PXA270 System-on-chip (ARM V5TE core)

	NAND Flash memory

	IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in “Akita”

	On-chip OHCI USB controller

	On-chip LCD controller

	On-chip Real Time Clock

	TI ADS7846 touchscreen controller on SSP bus

	Maxim MAX1111 analog-digital converter on I2C bus

	GPIO-connected keyboard controller and LEDs

	Secure Digital card connected to PXA MMC/SD host

	Three on-chip UARTs

	WM8750 audio CODEC on I2C and I2S busses

The Palm Tungsten|E PDA (codename “Cheetah”) emulation includes the
following elements:

	Texas Instruments OMAP310 System-on-chip (ARM 925T core)

	ROM and RAM memories (ROM firmware image can be loaded with
-option-rom)

	On-chip LCD controller

	On-chip Real Time Clock

	TI TSC2102i touchscreen controller / analog-digital converter /
Audio CODEC, connected through MicroWire and I2S busses

	GPIO-connected matrix keypad

	Secure Digital card connected to OMAP MMC/SD host

	Three on-chip UARTs

Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 /
48) emulation supports the following elements:

	Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)

	RAM and non-volatile OneNAND Flash memories

	Display connected to EPSON remote framebuffer chip and OMAP on-chip
display controller and a LS041y3 MIPI DBI-C controller

	TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen
controllers driven through SPI bus

	National Semiconductor LM8323-controlled qwerty keyboard driven
through I2C bus

	Secure Digital card connected to OMAP MMC/SD host

	Three OMAP on-chip UARTs and on-chip STI debugging console

	Mentor Graphics “Inventra” dual-role USB controller embedded in a
TI TUSB6010 chip - only USB host mode is supported

	TI TMP105 temperature sensor driven through I2C bus

	TI TWL92230C power management companion with an RTC on
I2C bus

	Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
through CBUS

The Luminary Micro Stellaris LM3S811EVB emulation includes the following
devices:

	Cortex-M3 CPU core.

	64k Flash and 8k SRAM.

	Timers, UARTs, ADC and I2C interface.

	OSRAM Pictiva 96x16 OLED with SSD0303 controller on
I2C bus.

The Luminary Micro Stellaris LM3S6965EVB emulation includes the
following devices:

	Cortex-M3 CPU core.

	256k Flash and 64k SRAM.

	Timers, UARTs, ADC, I2C and SSI interfaces.

	OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via
SSI.

The Freecom MusicPal internet radio emulation includes the following
elements:

	Marvell MV88W8618 ARM core.

	32 MB RAM, 256 KB SRAM, 8 MB flash.

	Up to 2 16550 UARTs

	MV88W8xx8 Ethernet controller

	MV88W8618 audio controller, WM8750 CODEC and mixer

	128x64 display with brightness control

	2 buttons, 2 navigation wheels with button function

The Siemens SX1 models v1 and v2 (default) basic emulation. The
emulation includes the following elements:

	Texas Instruments OMAP310 System-on-chip (ARM 925T core)

	ROM and RAM memories (ROM firmware image can be loaded with
-pflash) V1 1 Flash of 16MB and 1 Flash of 8MB V2 1 Flash of 32MB

	On-chip LCD controller

	On-chip Real Time Clock

	Secure Digital card connected to OMAP MMC/SD host

	Three on-chip UARTs

A Linux 2.6 test image is available on the QEMU web site. More
information is available in the QEMU mailing-list archive.

ColdFire System emulator

Use the executable qemu-system-m68k to simulate a ColdFire machine.
The emulator is able to boot a uClinux kernel.

The M5208EVB emulation includes the following devices:

	MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).

	Three Two on-chip UARTs.

	Fast Ethernet Controller (FEC)

The AN5206 emulation includes the following devices:

	MCF5206 ColdFire V2 Microprocessor.

	Two on-chip UARTs.

Xtensa System emulator

Two executables cover simulation of both Xtensa endian options,
qemu-system-xtensa and qemu-system-xtensaeb. Two different
machine types are emulated:

	Xtensa emulator pseudo board “sim”

	Avnet LX60/LX110/LX200 board

The sim pseudo board emulation provides an environment similar to one
provided by the proprietary Tensilica ISS. It supports:

	A range of Xtensa CPUs, default is the DC232B

	Console and filesystem access via semihosting calls

The Avnet LX60/LX110/LX200 emulation supports:

	A range of Xtensa CPUs, default is the DC232B

	16550 UART

	OpenCores 10/100 Mbps Ethernet MAC

Security

Overview

This chapter explains the security requirements that QEMU is designed to meet
and principles for securely deploying QEMU.

Security Requirements

QEMU supports many different use cases, some of which have stricter security
requirements than others. The community has agreed on the overall security
requirements that users may depend on. These requirements define what is
considered supported from a security perspective.

Virtualization Use Case

The virtualization use case covers cloud and virtual private server (VPS)
hosting, as well as traditional data center and desktop virtualization. These
use cases rely on hardware virtualization extensions to execute guest code
safely on the physical CPU at close-to-native speed.

The following entities are untrusted, meaning that they may be buggy or
malicious:

	Guest

	User-facing interfaces (e.g. VNC, SPICE, WebSocket)

	Network protocols (e.g. NBD, live migration)

	User-supplied files (e.g. disk images, kernels, device trees)

	Passthrough devices (e.g. PCI, USB)

Bugs affecting these entities are evaluated on whether they can cause damage in
real-world use cases and treated as security bugs if this is the case.

Non-virtualization Use Case

The non-virtualization use case covers emulation using the Tiny Code Generator
(TCG). In principle the TCG and device emulation code used in conjunction with
the non-virtualization use case should meet the same security requirements as
the virtualization use case. However, for historical reasons much of the
non-virtualization use case code was not written with these security
requirements in mind.

Bugs affecting the non-virtualization use case are not considered security
bugs at this time. Users with non-virtualization use cases must not rely on
QEMU to provide guest isolation or any security guarantees.

Architecture

This section describes the design principles that ensure the security
requirements are met.

Guest Isolation

Guest isolation is the confinement of guest code to the virtual machine. When
guest code gains control of execution on the host this is called escaping the
virtual machine. Isolation also includes resource limits such as throttling of
CPU, memory, disk, or network. Guests must be unable to exceed their resource
limits.

QEMU presents an attack surface to the guest in the form of emulated devices.
The guest must not be able to gain control of QEMU. Bugs in emulated devices
could allow malicious guests to gain code execution in QEMU. At this point the
guest has escaped the virtual machine and is able to act in the context of the
QEMU process on the host.

Guests often interact with other guests and share resources with them. A
malicious guest must not gain control of other guests or access their data.
Disk image files and network traffic must be protected from other guests unless
explicitly shared between them by the user.

Principle of Least Privilege

The principle of least privilege states that each component only has access to
the privileges necessary for its function. In the case of QEMU this means that
each process only has access to resources belonging to the guest.

The QEMU process should not have access to any resources that are inaccessible
to the guest. This way the guest does not gain anything by escaping into the
QEMU process since it already has access to those same resources from within
the guest.

Following the principle of least privilege immediately fulfills guest isolation
requirements. For example, guest A only has access to its own disk image file
a.img and not guest B’s disk image file b.img.

In reality certain resources are inaccessible to the guest but must be
available to QEMU to perform its function. For example, host system calls are
necessary for QEMU but are not exposed to guests. A guest that escapes into
the QEMU process can then begin invoking host system calls.

New features must be designed to follow the principle of least privilege.
Should this not be possible for technical reasons, the security risk must be
clearly documented so users are aware of the trade-off of enabling the feature.

Isolation mechanisms

Several isolation mechanisms are available to realize this architecture of
guest isolation and the principle of least privilege. With the exception of
Linux seccomp, these mechanisms are all deployed by management tools that
launch QEMU, such as libvirt. They are also platform-specific so they are only
described briefly for Linux here.

The fundamental isolation mechanism is that QEMU processes must run as
unprivileged users. Sometimes it seems more convenient to launch QEMU as
root to give it access to host devices (e.g. /dev/net/tun) but this poses a
huge security risk. File descriptor passing can be used to give an otherwise
unprivileged QEMU process access to host devices without running QEMU as root.
It is also possible to launch QEMU as a non-root user and configure UNIX groups
for access to /dev/kvm, /dev/net/tun, and other device nodes.
Some Linux distros already ship with UNIX groups for these devices by default.

	SELinux and AppArmor make it possible to confine processes beyond the
traditional UNIX process and file permissions model. They restrict the QEMU
process from accessing processes and files on the host system that are not
needed by QEMU.

	Resource limits and cgroup controllers provide throughput and utilization
limits on key resources such as CPU time, memory, and I/O bandwidth.

	Linux namespaces can be used to make process, file system, and other system
resources unavailable to QEMU. A namespaced QEMU process is restricted to only
those resources that were granted to it.

	Linux seccomp is available via the QEMU --sandbox option. It disables
system calls that are not needed by QEMU, thereby reducing the host kernel
attack surface.

Sensitive configurations

There are aspects of QEMU that can have security implications which users &
management applications must be aware of.

Monitor console (QMP and HMP)

The monitor console (whether used with QMP or HMP) provides an interface
to dynamically control many aspects of QEMU’s runtime operation. Many of the
commands exposed will instruct QEMU to access content on the host file system
and/or trigger spawning of external processes.

For example, the migrate command allows for the spawning of arbitrary
processes for the purpose of tunnelling the migration data stream. The
blockdev-add command instructs QEMU to open arbitrary files, exposing
their content to the guest as a virtual disk.

Unless QEMU is otherwise confined using technologies such as SELinux, AppArmor,
or Linux namespaces, the monitor console should be considered to have privileges
equivalent to those of the user account QEMU is running under.

It is further important to consider the security of the character device backend
over which the monitor console is exposed. It needs to have protection against
malicious third parties which might try to make unauthorized connections, or
perform man-in-the-middle attacks. Many of the character device backends do not
satisfy this requirement and so must not be used for the monitor console.

The general recommendation is that the monitor console should be exposed over
a UNIX domain socket backend to the local host only. Use of the TCP based
character device backend is inappropriate unless configured to use both TLS
encryption and authorization control policy on client connections.

In summary, the monitor console is considered a privileged control interface to
QEMU and as such should only be made accessible to a trusted management
application or user.

Adjunct Processor (AP) Device

Contents

	Adjunct Processor (AP) Device

	Introduction

	AP Architectural Overview

	Start Interpretive Execution (SIE) Instruction

	Example 1: Valid configuration

	Example 2: Valid configuration

	Example 3: Invalid configuration

	AP Matrix Configuration on Linux Host

	Binding AP devices to device drivers

	Configuring an AP matrix for a linux guest

	Starting a Linux Guest Configured with an AP Matrix

	Hot plug a vfio-ap device into a running guest

	Hot unplug a vfio-ap device from a running guest

	Example: Configure AP Matrices for Three Linux Guests

	Limitations

Introduction

The IBM Adjunct Processor (AP) Cryptographic Facility is comprised
of three AP instructions and from 1 to 256 PCIe cryptographic adapter cards.
These AP devices provide cryptographic functions to all CPUs assigned to a
linux system running in an IBM Z system LPAR.

On s390x, AP adapter cards are exposed via the AP bus. This document
describes how those cards may be made available to KVM guests using the
VFIO mediated device framework.

AP Architectural Overview

In order understand the terminology used in the rest of this document, let’s
start with some definitions:

	AP adapter

An AP adapter is an IBM Z adapter card that can perform cryptographic
functions. There can be from 0 to 256 adapters assigned to an LPAR depending
on the machine model. Adapters assigned to the LPAR in which a linux host is
running will be available to the linux host. Each adapter is identified by a
number from 0 to 255; however, the maximum adapter number allowed is
determined by machine model. When installed, an AP adapter is accessed by
AP instructions executed by any CPU.

	AP domain

An adapter is partitioned into domains. Each domain can be thought of as
a set of hardware registers for processing AP instructions. An adapter can
hold up to 256 domains; however, the maximum domain number allowed is
determined by machine model. Each domain is identified by a number from 0 to
255. Domains can be further classified into two types:

	Usage domains are domains that can be accessed directly to process AP
commands

	Control domains are domains that are accessed indirectly by AP
commands sent to a usage domain to control or change the domain; for
example, to set a secure private key for the domain.

	AP Queue

An AP queue is the means by which an AP command-request message is sent to an
AP usage domain inside a specific AP. An AP queue is identified by a tuple
comprised of an AP adapter ID (APID) and an AP queue index (APQI). The
APQI corresponds to a given usage domain number within the adapter. This tuple
forms an AP Queue Number (APQN) uniquely identifying an AP queue. AP
instructions include a field containing the APQN to identify the AP queue to
which the AP command-request message is to be sent for processing.

	AP Instructions:

There are three AP instructions:

	NQAP: to enqueue an AP command-request message to a queue

	DQAP: to dequeue an AP command-reply message from a queue

	PQAP: to administer the queues

AP instructions identify the domain that is targeted to process the AP
command; this must be one of the usage domains. An AP command may modify a
domain that is not one of the usage domains, but the modified domain
must be one of the control domains.

Start Interpretive Execution (SIE) Instruction

A KVM guest is started by executing the Start Interpretive Execution (SIE)
instruction. The SIE state description is a control block that contains the
state information for a KVM guest and is supplied as input to the SIE
instruction. The SIE state description contains a satellite control block called
the Crypto Control Block (CRYCB). The CRYCB contains three fields to identify
the adapters, usage domains and control domains assigned to the KVM guest:

	The AP Mask (APM) field is a bit mask that identifies the AP adapters assigned
to the KVM guest. Each bit in the mask, from left to right, corresponds to
an APID from 0-255. If a bit is set, the corresponding adapter is valid for
use by the KVM guest.

	The AP Queue Mask (AQM) field is a bit mask identifying the AP usage domains
assigned to the KVM guest. Each bit in the mask, from left to right,
corresponds to an AP queue index (APQI) from 0-255. If a bit is set, the
corresponding queue is valid for use by the KVM guest.

	The AP Domain Mask field is a bit mask that identifies the AP control domains
assigned to the KVM guest. The ADM bit mask controls which domains can be
changed by an AP command-request message sent to a usage domain from the
guest. Each bit in the mask, from left to right, corresponds to a domain from
0-255. If a bit is set, the corresponding domain can be modified by an AP
command-request message sent to a usage domain.

If you recall from the description of an AP Queue, AP instructions include
an APQN to identify the AP adapter and AP queue to which an AP command-request
message is to be sent (NQAP and PQAP instructions), or from which a
command-reply message is to be received (DQAP instruction). The validity of an
APQN is defined by the matrix calculated from the APM and AQM; it is the
cross product of all assigned adapter numbers (APM) with all assigned queue
indexes (AQM). For example, if adapters 1 and 2 and usage domains 5 and 6 are
assigned to a guest, the APQNs (1,5), (1,6), (2,5) and (2,6) will be valid for
the guest.

The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
at most one guest or the linux host.

Example 1: Valid configuration

	
	Guest1

	Guest2

	adapters

	1, 2

	1, 2

	domains

	5, 6

	7

This is valid because both guests have a unique set of APQNs:

	Guest1 has APQNs (1,5), (1,6), (2,5) and (2,6);

	Guest2 has APQNs (1,7) and (2,7).

Example 2: Valid configuration

	
	Guest1

	Guest2

	adapters

	1, 2

	3, 4

	domains

	5, 6

	5, 6

This is also valid because both guests have a unique set of APQNs:

	Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);

	Guest2 has APQNs (3,5), (3,6), (4,5), (4,6)

Example 3: Invalid configuration

	
	Guest1

	Guest2

	adapters

	1, 2

	1

	domains

	5, 6

	6, 7

This is an invalid configuration because both guests have access to
APQN (1,6).

AP Matrix Configuration on Linux Host

A linux system is a guest of the LPAR in which it is running and has access to
the AP resources configured for the LPAR. The LPAR’s AP matrix is
configured via its Activation Profile which can be edited on the HMC. When the
linux system is started, the AP bus will detect the AP devices assigned to the
LPAR and create the following in sysfs:

/sys/bus/ap
... [devices]
...... xx.yyyy
...... ...
...... cardxx
...... ...

Where:

	cardxx

	is AP adapter number xx (in hex)

	xx.yyyy

	is an APQN with xx specifying the APID and yyyy specifying the APQI

For example, if AP adapters 5 and 6 and domains 4, 71 (0x47), 171 (0xab) and
255 (0xff) are configured for the LPAR, the sysfs representation on the linux
host system would look like this:

/sys/bus/ap
... [devices]
...... 05.0004
...... 05.0047
...... 05.00ab
...... 05.00ff
...... 06.0004
...... 06.0047
...... 06.00ab
...... 06.00ff
...... card05
...... card06

A set of default device drivers are also created to control each type of AP
device that can be assigned to the LPAR on which a linux host is running:

/sys/bus/ap
... [drivers]
...... [cex2acard] for Crypto Express 2/3 accelerator cards
...... [cex2aqueue] for AP queues served by Crypto Express 2/3
 accelerator cards
...... [cex4card] for Crypto Express 4/5/6 accelerator and coprocessor
 cards
...... [cex4queue] for AP queues served by Crypto Express 4/5/6
 accelerator and coprocessor cards
...... [pcixcccard] for Crypto Express 2/3 coprocessor cards
...... [pcixccqueue] for AP queues served by Crypto Express 2/3
 coprocessor cards

Binding AP devices to device drivers

There are two sysfs files that specify bitmasks marking a subset of the APQN
range as ‘usable by the default AP queue device drivers’ or ‘not usable by the
default device drivers’ and thus available for use by the alternate device
driver(s). The sysfs locations of the masks are:

/sys/bus/ap/apmask
/sys/bus/ap/aqmask

The apmask is a 256-bit mask that identifies a set of AP adapter IDs
(APID). Each bit in the mask, from left to right (i.e., from most significant
to least significant bit in big endian order), corresponds to an APID from
0-255. If a bit is set, the APID is marked as usable only by the default AP
queue device drivers; otherwise, the APID is usable by the vfio_ap
device driver.

The aqmask is a 256-bit mask that identifies a set of AP queue indexes
(APQI). Each bit in the mask, from left to right (i.e., from most significant
to least significant bit in big endian order), corresponds to an APQI from
0-255. If a bit is set, the APQI is marked as usable only by the default AP
queue device drivers; otherwise, the APQI is usable by the vfio_ap device
driver.

Take, for example, the following mask:

0x7dff

It indicates:

1, 2, 3, 4, 5, and 7-255 belong to the default drivers’ pool, and 0 and 6
belong to the vfio_ap device driver’s pool.

The APQN of each AP queue device assigned to the linux host is checked by the
AP bus against the set of APQNs derived from the cross product of APIDs
and APQIs marked as usable only by the default AP queue device drivers. If a
match is detected, only the default AP queue device drivers will be probed;
otherwise, the vfio_ap device driver will be probed.

By default, the two masks are set to reserve all APQNs for use by the default
AP queue device drivers. There are two ways the default masks can be changed:

	The sysfs mask files can be edited by echoing a string into the
respective sysfs mask file in one of two formats:

	An absolute hex string starting with 0x - like “0x12345678” - sets
the mask. If the given string is shorter than the mask, it is padded
with 0s on the right; for example, specifying a mask value of 0x41 is
the same as specifying:

0x4100

Keep in mind that the mask reads from left to right (i.e., most
significant to least significant bit in big endian order), so the mask
above identifies device numbers 1 and 7 (01000001).

If the string is longer than the mask, the operation is terminated with
an error (EINVAL).

	Individual bits in the mask can be switched on and off by specifying
each bit number to be switched in a comma separated list. Each bit
number string must be prepended with a (+) or minus (-) to indicate
the corresponding bit is to be switched on (+) or off (-). Some
valid values are:

"+0" switches bit 0 on
"-13" switches bit 13 off
"+0x41" switches bit 65 on
"-0xff" switches bit 255 off

The following example:

+0,-6,+0x47,-0xf0

Switches bits 0 and 71 (0x47) on
Switches bits 6 and 240 (0xf0) off

Note that the bits not specified in the list remain as they were before
the operation.

	The masks can also be changed at boot time via parameters on the kernel
command line like this:

ap.apmask=0xffff ap.aqmask=0x40

This would create the following masks:

apmask:

0xffff00

aqmask:

0x4000

Resulting in these two pools:

default drivers pool: adapter 0-15, domain 1
alternate drivers pool: adapter 16-255, domains 0, 2-255

Configuring an AP matrix for a linux guest

The sysfs interfaces for configuring an AP matrix for a guest are built on the
VFIO mediated device framework. To configure an AP matrix for a guest, a
mediated matrix device must first be created for the /sys/devices/vfio_ap/matrix
device. When the vfio_ap device driver is loaded, it registers with the VFIO
mediated device framework. When the driver registers, the sysfs interfaces for
creating mediated matrix devices is created:

/sys/devices
... [vfio_ap]
......[matrix]
......... [mdev_supported_types]
............ [vfio_ap-passthrough]
............... create
............... [devices]

A mediated AP matrix device is created by writing a UUID to the attribute file
named create, for example:

uuidgen > create

or

echo $uuid > create

When a mediated AP matrix device is created, a sysfs directory named after
the UUID is created in the devices subdirectory:

/sys/devices
... [vfio_ap]
......[matrix]
......... [mdev_supported_types]
............ [vfio_ap-passthrough]
............... create
............... [devices]
.................. [$uuid]

There will also be three sets of attribute files created in the mediated
matrix device’s sysfs directory to configure an AP matrix for the
KVM guest:

/sys/devices
... [vfio_ap]
......[matrix]
......... [mdev_supported_types]
............ [vfio_ap-passthrough]
............... create
............... [devices]
.................. [$uuid]
..................... assign_adapter
..................... assign_control_domain
..................... assign_domain
..................... matrix
..................... unassign_adapter
..................... unassign_control_domain
..................... unassign_domain

	assign_adapter

	To assign an AP adapter to the mediated matrix device, its APID is written
to the assign_adapter file. This may be done multiple times to assign more
than one adapter. The APID may be specified using conventional semantics
as a decimal, hexadecimal, or octal number. For example, to assign adapters
4, 5 and 16 to a mediated matrix device in decimal, hexadecimal and octal
respectively:

echo 4 > assign_adapter
echo 0x5 > assign_adapter
echo 020 > assign_adapter

In order to successfully assign an adapter:

	The adapter number specified must represent a value from 0 up to the
maximum adapter number allowed by the machine model. If an adapter number
higher than the maximum is specified, the operation will terminate with
an error (ENODEV).

	All APQNs that can be derived from the adapter ID being assigned and the
IDs of the previously assigned domains must be bound to the vfio_ap device
driver. If no domains have yet been assigned, then there must be at least
one APQN with the specified APID bound to the vfio_ap driver. If no such
APQNs are bound to the driver, the operation will terminate with an
error (EADDRNOTAVAIL).

	No APQN that can be derived from the adapter ID and the IDs of the
previously assigned domains can be assigned to another mediated matrix
device. If an APQN is assigned to another mediated matrix device, the
operation will terminate with an error (EADDRINUSE).

	unassign_adapter

	To unassign an AP adapter, its APID is written to the unassign_adapter
file. This may also be done multiple times to unassign more than one adapter.

	assign_domain

	To assign a usage domain, the domain number is written into the
assign_domain file. This may be done multiple times to assign more than one
usage domain. The domain number is specified using conventional semantics as
a decimal, hexadecimal, or octal number. For example, to assign usage domains
4, 8, and 71 to a mediated matrix device in decimal, hexadecimal and octal
respectively:

echo 4 > assign_domain
echo 0x8 > assign_domain
echo 0107 > assign_domain

In order to successfully assign a domain:

	The domain number specified must represent a value from 0 up to the
maximum domain number allowed by the machine model. If a domain number
higher than the maximum is specified, the operation will terminate with
an error (ENODEV).

	All APQNs that can be derived from the domain ID being assigned and the IDs
of the previously assigned adapters must be bound to the vfio_ap device
driver. If no domains have yet been assigned, then there must be at least
one APQN with the specified APQI bound to the vfio_ap driver. If no such
APQNs are bound to the driver, the operation will terminate with an
error (EADDRNOTAVAIL).

	No APQN that can be derived from the domain ID being assigned and the IDs
of the previously assigned adapters can be assigned to another mediated
matrix device. If an APQN is assigned to another mediated matrix device,
the operation will terminate with an error (EADDRINUSE).

	unassign_domain

	To unassign a usage domain, the domain number is written into the
unassign_domain file. This may be done multiple times to unassign more than
one usage domain.

	assign_control_domain

	To assign a control domain, the domain number is written into the
assign_control_domain file. This may be done multiple times to
assign more than one control domain. The domain number may be specified using
conventional semantics as a decimal, hexadecimal, or octal number. For
example, to assign control domains 4, 8, and 71 to a mediated matrix device
in decimal, hexadecimal and octal respectively:

echo 4 > assign_domain
echo 0x8 > assign_domain
echo 0107 > assign_domain

In order to successfully assign a control domain, the domain number
specified must represent a value from 0 up to the maximum domain number
allowed by the machine model. If a control domain number higher than the
maximum is specified, the operation will terminate with an error (ENODEV).

	unassign_control_domain

	To unassign a control domain, the domain number is written into the
unassign_domain file. This may be done multiple times to unassign more than
one control domain.

Notes: No changes to the AP matrix will be allowed while a guest using
the mediated matrix device is running. Attempts to assign an adapter,
domain or control domain will be rejected and an error (EBUSY) returned.

Starting a Linux Guest Configured with an AP Matrix

To provide a mediated matrix device for use by a guest, the following option
must be specified on the QEMU command line:

-device vfio_ap,sysfsdev=$path-to-mdev

The sysfsdev parameter specifies the path to the mediated matrix device.
There are a number of ways to specify this path:

/sys/devices/vfio_ap/matrix/$uuid
/sys/bus/mdev/devices/$uuid
/sys/bus/mdev/drivers/vfio_mdev/$uuid
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/devices/$uuid

When the linux guest is started, the guest will open the mediated
matrix device’s file descriptor to get information about the mediated matrix
device. The vfio_ap device driver will update the APM, AQM, and ADM fields in
the guest’s CRYCB with the adapter, usage domain and control domains assigned
via the mediated matrix device’s sysfs attribute files. Programs running on the
linux guest will then:

	Have direct access to the APQNs derived from the cross product of the AP
adapter numbers (APID) and queue indexes (APQI) specified in the APM and AQM
fields of the guests’s CRYCB respectively. These APQNs identify the AP queues
that are valid for use by the guest; meaning, AP commands can be sent by the
guest to any of these queues for processing.

	Have authorization to process AP commands to change a control domain
identified in the ADM field of the guest’s CRYCB. The AP command must be sent
to a valid APQN (see 1 above).

CPU model features:

Three CPU model features are available for controlling guest access to AP
facilities:

	AP facilities feature

The AP facilities feature indicates that AP facilities are installed on the
guest. This feature will be exposed for use only if the AP facilities
are installed on the host system. The feature is s390-specific and is
represented as a parameter of the -cpu option on the QEMU command line:

qemu-system-s390x -cpu $model,ap=on|off

Where:

	$model

	is the CPU model defined for the guest (defaults to the model of
the host system if not specified).

	ap=on|off

	indicates whether AP facilities are installed (on) or not
(off). The default for CPU models zEC12 or newer
is ap=on. AP facilities must be installed on the guest if a
vfio-ap device (-device vfio-ap,sysfsdev=$path) is configured
for the guest, or the guest will fail to start.

	Query Configuration Information (QCI) facility

The QCI facility is used by the AP bus running on the guest to query the
configuration of the AP facilities. This facility will be available
only if the QCI facility is installed on the host system. The feature is
s390-specific and is represented as a parameter of the -cpu option on the
QEMU command line:

qemu-system-s390x -cpu $model,apqci=on|off

Where:

	$model

	is the CPU model defined for the guest

	apqci=on|off

	indicates whether the QCI facility is installed (on) or
not (off). The default for CPU models zEC12 or newer
is apqci=on; for older models, QCI will not be installed.

If QCI is installed (apqci=on) but AP facilities are not
(ap=off), an error message will be logged, but the guest
will be allowed to start. It makes no sense to have QCI
installed if the AP facilities are not; this is considered
an invalid configuration.

If the QCI facility is not installed, APQNs with an APQI
greater than 15 will not be detected by the AP bus
running on the guest.

	Adjunct Process Facility Test (APFT) facility

The APFT facility is used by the AP bus running on the guest to test the
AP facilities available for a given AP queue. This facility will be available
only if the APFT facility is installed on the host system. The feature is
s390-specific and is represented as a parameter of the -cpu option on the
QEMU command line:

qemu-system-s390x -cpu $model,apft=on|off

Where:

	$model

	is the CPU model defined for the guest (defaults to the model of
the host system if not specified).

	apft=on|off

	indicates whether the APFT facility is installed (on) or
not (off). The default for CPU models zEC12 and
newer is apft=on for older models, APFT will not be
installed.

If APFT is installed (apft=on) but AP facilities are not
(ap=off), an error message will be logged, but the guest
will be allowed to start. It makes no sense to have APFT
installed if the AP facilities are not; this is considered
an invalid configuration.

It also makes no sense to turn APFT off because the AP bus
running on the guest will not detect CEX4 and newer devices
without it. Since only CEX4 and newer devices are supported
for guest usage, no AP devices can be made accessible to a
guest started without APFT installed.

Hot plug a vfio-ap device into a running guest

Only one vfio-ap device can be attached to the virtual machine’s ap-bus, so a
vfio-ap device can be hot plugged if and only if no vfio-ap device is attached
to the bus already, whether via the QEMU command line or a prior hot plug
action.

To hot plug a vfio-ap device, use the QEMU device_add command:

(qemu) device_add vfio-ap,sysfsdev="$path-to-mdev"

Where the $path-to-mdev value specifies the absolute path to a mediated
device to which AP resources to be used by the guest have been assigned.

Note that on Linux guests, the AP devices will be created in the
/sys/bus/ap/devices directory when the AP bus subsequently performs its periodic
scan, so there may be a short delay before the AP devices are accessible on the
guest.

The command will fail if:

	A vfio-ap device has already been attached to the virtual machine’s ap-bus.

	The CPU model features for controlling guest access to AP facilities are not
enabled (see ‘CPU model features’ subsection in the previous section).

Hot unplug a vfio-ap device from a running guest

A vfio-ap device can be unplugged from a running KVM guest if a vfio-ap device
has been attached to the virtual machine’s ap-bus via the QEMU command line
or a prior hot plug action.

To hot unplug a vfio-ap device, use the QEMU device_del command:

(qemu) device_del vfio-ap,sysfsdev="$path-to-mdev"

Where $path-to-mdev is the same as the path specified when the vfio-ap
device was attached to the virtual machine’s ap-bus.

On a Linux guest, the AP devices will be removed from the /sys/bus/ap/devices
directory on the guest when the AP bus subsequently performs its periodic scan,
so there may be a short delay before the AP devices are no longer accessible by
the guest.

The command will fail if the $path-to-mdev specified on the device_del command
does not match the value specified when the vfio-ap device was attached to
the virtual machine’s ap-bus.

Example: Configure AP Matrices for Three Linux Guests

Let’s now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
three guests such that executing the lszcrypt command on the guests would
look like this:

Guest1:

CARD.DOMAIN TYPE MODE

05 CEX5C CCA-Coproc
05.0004 CEX5C CCA-Coproc
05.00ab CEX5C CCA-Coproc
06 CEX5A Accelerator
06.0004 CEX5A Accelerator
06.00ab CEX5C CCA-Coproc

Guest2:

CARD.DOMAIN TYPE MODE

05 CEX5A Accelerator
05.0047 CEX5A Accelerator
05.00ff CEX5A Accelerator

Guest3:

CARD.DOMAIN TYPE MODE

06 CEX5A Accelerator
06.0047 CEX5A Accelerator
06.00ff CEX5A Accelerator

These are the steps:

	Install the vfio_ap module on the linux host. The dependency chain for the
vfio_ap module is:

	iommu

	s390

	zcrypt

	vfio

	vfio_mdev

	vfio_mdev_device

	KVM

To build the vfio_ap module, the kernel build must be configured with the
following Kconfig elements selected:

	IOMMU_SUPPORT

	S390

	ZCRYPT

	S390_AP_IOMMU

	VFIO

	VFIO_MDEV

	VFIO_MDEV_DEVICE

	KVM

	If using make menuconfig select the following to build the vfio_ap module::

	
	-> Device Drivers

	
	-> IOMMU Hardware Support

	select S390 AP IOMMU Support

	-> VFIO Non-Privileged userspace driver framework

	
	-> Mediated device driver framework

	-> VFIO driver for Mediated devices

	-> I/O subsystem

	-> VFIO support for AP devices

	Secure the AP queues to be used by the three guests so that the host can not
access them. To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff,
06.0004, 06.0047, 06.00ab, and 06.00ff for use by the vfio_ap device driver,
the corresponding APQNs must be removed from the default queue drivers pool
as follows:

echo -5,-6 > /sys/bus/ap/apmask

echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask

This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
sysfs directory for the vfio_ap device driver will now contain symbolic links
to the AP queue devices bound to it:

/sys/bus/ap
... [drivers]
...... [vfio_ap]
......... [05.0004]
......... [05.0047]
......... [05.00ab]
......... [05.00ff]
......... [06.0004]
......... [06.0047]
......... [06.00ab]
......... [06.00ff]

Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
can be bound to the vfio_ap device driver. The reason for this is to
simplify the implementation by not needlessly complicating the design by
supporting older devices that will go out of service in the relatively near
future, and for which there are few older systems on which to test.

The administrator, therefore, must take care to secure only AP queues that
can be bound to the vfio_ap device driver. The device type for a given AP
queue device can be read from the parent card’s sysfs directory. For example,
to see the hardware type of the queue 05.0004:

cat /sys/bus/ap/devices/card05/hwtype

The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
vfio_ap device driver.

	Create the mediated devices needed to configure the AP matrixes for the
three guests and to provide an interface to the vfio_ap driver for
use by the guests:

/sys/devices/vfio_ap/matrix/
... [mdev_supported_types]
...... [vfio_ap-passthrough] (passthrough mediated matrix device type)
......... create
......... [devices]

To create the mediated devices for the three guests:

uuidgen > create
uuidgen > create
uuidgen > create

or

echo $uuid1 > create
echo $uuid2 > create
echo $uuid3 > create

This will create three mediated devices in the [devices] subdirectory named
after the UUID used to create the mediated device. We’ll call them $uuid1,
$uuid2 and $uuid3 and this is the sysfs directory structure after creation:

/sys/devices/vfio_ap/matrix/
... [mdev_supported_types]
...... [vfio_ap-passthrough]
......... [devices]
............ [$uuid1]
............... assign_adapter
............... assign_control_domain
............... assign_domain
............... matrix
............... unassign_adapter
............... unassign_control_domain
............... unassign_domain

............ [$uuid2]
............... assign_adapter
............... assign_control_domain
............... assign_domain
............... matrix
............... unassign_adapter
............... unassign_control_domain
............... unassign_domain

............ [$uuid3]
............... assign_adapter
............... assign_control_domain
............... assign_domain
............... matrix
............... unassign_adapter
............... unassign_control_domain
............... unassign_domain

	The administrator now needs to configure the matrixes for the mediated
devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).

This is how the matrix is configured for Guest1:

echo 5 > assign_adapter
echo 6 > assign_adapter
echo 4 > assign_domain
echo 0xab > assign_domain

Control domains can similarly be assigned using the assign_control_domain
sysfs file.

If a mistake is made configuring an adapter, domain or control domain,
you can use the unassign_xxx interfaces to unassign the adapter, domain or
control domain.

To display the matrix configuration for Guest1:

cat matrix

The output will display the APQNs in the format xx.yyyy, where xx is
the adapter number and yyyy is the domain number. The output for Guest1
will look like this:

05.0004
05.00ab
06.0004
06.00ab

This is how the matrix is configured for Guest2:

echo 5 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain

This is how the matrix is configured for Guest3:

echo 6 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain

	Start Guest1:

/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...

	Start Guest2:

/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...

	Start Guest3:

/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...

When the guest is shut down, the mediated matrix devices may be removed.

Using our example again, to remove the mediated matrix device $uuid1:

/sys/devices/vfio_ap/matrix/
... [mdev_supported_types]
...... [vfio_ap-passthrough]
......... [devices]
............ [$uuid1]
............... remove

echo 1 > remove

This will remove all of the mdev matrix device’s sysfs structures including
the mdev device itself. To recreate and reconfigure the mdev matrix device,
all of the steps starting with step 3 will have to be performed again. Note
that the remove will fail if a guest using the mdev is still running.

It is not necessary to remove an mdev matrix device, but one may want to
remove it if no guest will use it during the remaining lifetime of the linux
host. If the mdev matrix device is removed, one may want to also reconfigure
the pool of adapters and queues reserved for use by the default drivers.

Limitations

	The KVM/kernel interfaces do not provide a way to prevent restoring an APQN
to the default drivers pool of a queue that is still assigned to a mediated
device in use by a guest. It is incumbent upon the administrator to
ensure there is no mediated device in use by a guest to which the APQN is
assigned lest the host be given access to the private data of the AP queue
device, such as a private key configured specifically for the guest.

	Dynamically assigning AP resources to or unassigning AP resources from a
mediated matrix device - see Configuring an AP matrix for a linux guest
section above - while a running guest is using it is currently not supported.

	Live guest migration is not supported for guests using AP devices. If a guest
is using AP devices, the vfio-ap device configured for the guest must be
unplugged before migrating the guest (see Hot unplug a vfio-ap device from a
running guest section above.)

Deprecated features

In general features are intended to be supported indefinitely once
introduced into QEMU. In the event that a feature needs to be removed,
it will be listed in this section. The feature will remain functional
for 2 releases prior to actual removal. Deprecated features may also
generate warnings on the console when QEMU starts up, or if activated
via a monitor command, however, this is not a mandatory requirement.

Prior to the 2.10.0 release there was no official policy on how
long features would be deprecated prior to their removal, nor
any documented list of which features were deprecated. Thus
any features deprecated prior to 2.10.0 will be treated as if
they were first deprecated in the 2.10.0 release.

What follows is a list of all features currently marked as
deprecated.

System emulator command line arguments

-machine enforce-config-section=on|off (since 3.1)

The enforce-config-section parameter is replaced by the
-global migration.send-configuration={on|off} option.

-no-kvm (since 1.3.0)

The -no-kvm argument is now a synonym for setting -accel tcg.

-usbdevice (since 2.10.0)

The -usbdevice DEV argument is now a synonym for setting
the -device usb-DEV argument instead. The deprecated syntax
would automatically enable USB support on the machine type.
If using the new syntax, USB support must be explicitly
enabled via the -machine usb=on argument.

-drive file=json:{...{'driver':'file'}} (since 3.0)

The ‘file’ driver for drives is no longer appropriate for character or host
devices and will only accept regular files (S_IFREG). The correct driver
for these file types is ‘host_cdrom’ or ‘host_device’ as appropriate.

-net ...,name=name (since 3.1)

The name parameter of the -net option is a synonym
for the id parameter, which should now be used instead.

-smp (invalid topologies) (since 3.1)

CPU topology properties should describe whole machine topology including
possible CPUs.

However, historically it was possible to start QEMU with an incorrect topology
where n <= sockets * cores * threads < maxcpus,
which could lead to an incorrect topology enumeration by the guest.
Support for invalid topologies will be removed, the user must ensure
topologies described with -smp include all possible cpus, i.e.
sockets * cores * threads = maxcpus.

-vnc acl (since 4.0.0)

The acl option to the -vnc argument has been replaced
by the tls-authz and sasl-authz options.

QEMU_AUDIO_ environment variables and -audio-help (since 4.0)

The -audiodev argument is now the preferred way to specify audio
backend settings instead of environment variables. To ease migration to
the new format, the -audiodev-help option can be used to convert
the current values of the environment variables to -audiodev options.

Creating sound card devices and vnc without audiodev= property (since 4.2)

When not using the deprecated legacy audio config, each sound card
should specify an audiodev= property. Additionally, when using
vnc, you should specify an audiodev= propery if you plan to
transmit audio through the VNC protocol.

-mon ...,control=readline,pretty=on|off (since 4.1)

The pretty=on|off switch has no effect for HMP monitors, but is
silently ignored. Using the switch with HMP monitors will become an
error in the future.

-realtime (since 4.1)

The -realtime mlock=on|off argument has been replaced by the
-overcommit mem-lock=on|off argument.

-numa node,mem=size (since 4.1)

The parameter mem of -numa node is used to assign a part of
guest RAM to a NUMA node. But when using it, it’s impossible to manage specified
RAM chunk on the host side (like bind it to a host node, setting bind policy, …),
so guest end-ups with the fake NUMA configuration with suboptiomal performance.
However since 2014 there is an alternative way to assign RAM to a NUMA node
using parameter memdev, which does the same as mem and adds
means to actualy manage node RAM on the host side. Use parameter memdev
with memory-backend-ram backend as an replacement for parameter mem
to achieve the same fake NUMA effect or a properly configured
memory-backend-file backend to actually benefit from NUMA configuration.
In future new machine versions will not accept the option but it will still
work with old machine types. User can check QAPI schema to see if the legacy
option is supported by looking at MachineInfo::numa-mem-supported property.

-numa node (without memory specified) (since 4.1)

Splitting RAM by default between NUMA nodes has the same issues as mem
parameter described above with the difference that the role of the user plays
QEMU using implicit generic or board specific splitting rule.
Use memdev with memory-backend-ram backend or mem (if
it’s supported by used machine type) to define mapping explictly instead.

-mem-path fallback to RAM (since 4.1)

Currently if guest RAM allocation from file pointed by mem-path
fails, QEMU falls back to allocating from RAM, which might result
in unpredictable behavior since the backing file specified by the user
is ignored. In the future, users will be responsible for making sure
the backing storage specified with -mem-path can actually provide
the guest RAM configured with -m and QEMU will fail to start up if
RAM allocation is unsuccessful.

RISC-V -bios (since 4.1)

QEMU 4.1 introduced support for the -bios option in QEMU for RISC-V for the
RISC-V virt machine and sifive_u machine.

QEMU 4.1 has no changes to the default behaviour to avoid breakages. This
default will change in a future QEMU release, so please prepare now. All users
of the virt or sifive_u machine must change their command line usage.

	QEMU 4.1 has three options, please migrate to one of these three:

	
	
	-bios none - This is the current default behavior if no -bios option

	is included. QEMU will not automatically load any firmware. It is up
to the user to load all the images they need.

	
	-bios default - In a future QEMU release this will become the default

	behaviour if no -bios option is specified. This option will load the
default OpenSBI firmware automatically. The firmware is included with
the QEMU release and no user interaction is required. All a user needs
to do is specify the kernel they want to boot with the -kernel option

	-bios <file> - Tells QEMU to load the specified file as the firmwrae.

-tb-size option (since 5.0)

QEMU 5.0 introduced an alternative syntax to specify the size of the translation
block cache, -accel tcg,tb-size=. The new syntax deprecates the
previously available -tb-size option.

-show-cursor option (since 5.0)

	Use -display sdl,show-cursor=on or

	-display gtk,show-cursor=on instead.

QEMU Machine Protocol (QMP) commands

change (since 2.5.0)

Use blockdev-change-medium or change-vnc-password instead.

migrate_set_downtime and migrate_set_speed (since 2.8.0)

Use migrate-set-parameters instead.

migrate-set-cache-size and query-migrate-cache-size (since 2.11.0)

Use migrate-set-parameters and query-migrate-parameters instead.

query-block result field dirty-bitmaps[i].status (since 4.0)

The status field of the BlockDirtyInfo structure, returned by
the query-block command is deprecated. Two new boolean fields,
recording and busy effectively replace it.

query-block result field dirty-bitmaps (Since 4.2)

The dirty-bitmaps field of the BlockInfo structure, returned by
the query-block command is itself now deprecated. The dirty-bitmaps
field of the BlockDeviceInfo struct should be used instead, which is the
type of the inserted field in query-block replies, as well as the
type of array items in query-named-block-nodes.

Since the dirty-bitmaps field is optionally present in both the old and
new locations, clients must use introspection to learn where to anticipate
the field if/when it does appear in command output.

query-cpus (since 2.12.0)

The query-cpus command is replaced by the query-cpus-fast command.

query-cpus-fast arch output member (since 3.0.0)

The arch output member of the query-cpus-fast command is
replaced by the target output member.

cpu-add (since 4.0)

Use device_add for hotplugging vCPUs instead of cpu-add. See
documentation of query-hotpluggable-cpus for additional
details.

query-events (since 4.0)

The query-events command has been superseded by the more powerful
and accurate query-qmp-schema command.

chardev client socket with wait option (since 4.0)

Character devices creating sockets in client mode should not specify
the ‘wait’ field, which is only applicable to sockets in server mode

Human Monitor Protocol (HMP) commands

The hub_id parameter of hostfwd_add / hostfwd_remove (since 3.1)

The [hub_id name] parameter tuple of the ‘hostfwd_add’ and
‘hostfwd_remove’ HMP commands has been replaced by netdev_id.

cpu-add (since 4.0)

Use device_add for hotplugging vCPUs instead of cpu-add. See
documentation of query-hotpluggable-cpus for additional details.

acl_show, acl_reset, acl_policy, acl_add, acl_remove (since 4.0.0)

The acl_show, acl_reset, acl_policy, acl_add, and
acl_remove commands are deprecated with no replacement. Authorization
for VNC should be performed using the pluggable QAuthZ objects.

Guest Emulator ISAs

RISC-V ISA privledge specification version 1.09.1 (since 4.1)

The RISC-V ISA privledge specification version 1.09.1 has been deprecated.
QEMU supports both the newer version 1.10.0 and the ratified version 1.11.0, these
should be used instead of the 1.09.1 version.

System emulator CPUS

RISC-V ISA CPUs (since 4.1)

The RISC-V cpus with the ISA version in the CPU name have been depcreated. The
four CPUs are: rv32gcsu-v1.9.1, rv32gcsu-v1.10.0, rv64gcsu-v1.9.1 and
rv64gcsu-v1.10.0. Instead the version can be specified via the CPU priv_spec
option when using the rv32 or rv64 CPUs.

RISC-V ISA CPUs (since 4.1)

The RISC-V no MMU cpus have been depcreated. The two CPUs: rv32imacu-nommu and
rv64imacu-nommu should no longer be used. Instead the MMU status can be specified
via the CPU mmu option when using the rv32 or rv64 CPUs.

System emulator devices

ide-drive (since 4.2)

The ‘ide-drive’ device is deprecated. Users should use ‘ide-hd’ or
‘ide-cd’ as appropriate to get an IDE hard disk or CD-ROM as needed.

scsi-disk (since 4.2)

The ‘scsi-disk’ device is deprecated. Users should use ‘scsi-hd’ or
‘scsi-cd’ as appropriate to get a SCSI hard disk or CD-ROM as needed.

System emulator machines

mips r4k platform (since 5.0)

This machine type is very old and unmaintained. Users should use the malta
machine type instead.

pc-1.0, pc-1.1, pc-1.2 and pc-1.3 (since 5.0)

These machine types are very old and likely can not be used for live migration
from old QEMU versions anymore. A newer machine type should be used instead.

spike_v1.9.1 and spike_v1.10 (since 4.1)

The version specific Spike machines have been deprecated in favour of the
generic spike machine. If you need to specify an older version of the RISC-V
spec you can use the -cpu rv64gcsu,priv_spec=v1.9.1 command line argument.

Device options

Emulated device options

-device virtio-blk,scsi=on|off (since 5.0.0)

The virtio-blk SCSI passthrough feature is a legacy VIRTIO feature. VIRTIO 1.0
and later do not support it because the virtio-scsi device was introduced for
full SCSI support. Use virtio-scsi instead when SCSI passthrough is required.

Note this also applies to -device virtio-blk-pci,scsi=on|off, which is an
alias.

Block device options

"backing": "" (since 2.12.0)

In order to prevent QEMU from automatically opening an image’s backing
chain, use "backing": null instead.

rbd keyvalue pair encoded filenames: "" (since 3.1.0)

Options for rbd should be specified according to its runtime options,
like other block drivers. Legacy parsing of keyvalue pair encoded
filenames is useful to open images with the old format for backing files;
These image files should be updated to use the current format.

Example of legacy encoding:

json:{"file.driver":"rbd", "file.filename":"rbd:rbd/name"}

The above, converted to the current supported format:

json:{"file.driver":"rbd", "file.pool":"rbd", "file.image":"name"}

Related binaries

qemu-img convert -n -o (since 4.2.0)

All options specified in -o are image creation options, so
they have no effect when used with -n to skip image creation.
Silently ignored options can be confusing, so this combination of
options will be made an error in future versions.

Backwards compatibility

Runnability guarantee of CPU models (since 4.1.0)

Previous versions of QEMU never changed existing CPU models in
ways that introduced additional host software or hardware
requirements to the VM. This allowed management software to
safely change the machine type of an existing VM without
introducing new requirements (“runnability guarantee”). This
prevented CPU models from being updated to include CPU
vulnerability mitigations, leaving guests vulnerable in the
default configuration.

The CPU model runnability guarantee won’t apply anymore to
existing CPU models. Management software that needs runnability
guarantees must resolve the CPU model aliases using te
alias-of field returned by the query-cpu-definitions QMP
command.

While those guarantees are kept, the return value of
query-cpu-definitions will have existing CPU model aliases
point to a version that doesn’t break runnability guarantees
(specifically, version 1 of those CPU models). In future QEMU
versions, aliases will point to newer CPU model versions
depending on the machine type, so management software must
resolve CPU model aliases before starting a virtual machine.

Recently removed features

What follows is a record of recently removed, formerly deprecated
features that serves as a record for users who have encountered
trouble after a recent upgrade.

QEMU Machine Protocol (QMP) commands

block-dirty-bitmap-add “autoload” parameter (since 4.2.0)

The “autoload” parameter has been ignored since 2.12.0. All bitmaps
are automatically loaded from qcow2 images.

Related binaries

qemu-nbd --partition (removed in 5.0.0)

The qemu-nbd --partition $digit code (also spelled -P)
could only handle MBR partitions, and never correctly handled logical
partitions beyond partition 5. Exporting a partition can still be
done by utilizing the --image-opts option with a raw blockdev
using the offset and size parameters layered on top of
any other existing blockdev. For example, if partition 1 is 100MiB
long starting at 1MiB, the old command:

qemu-nbd -t -P 1 -f qcow2 file.qcow2

can be rewritten as:

qemu-nbd -t --image-opts driver=raw,offset=1M,size=100M,file.driver=qcow2,file.file.driver=file,file.file.filename=file.qcow2

Supported build platforms

QEMU aims to support building and executing on multiple host OS
platforms. This appendix outlines which platforms are the major build
targets. These platforms are used as the basis for deciding upon the
minimum required versions of 3rd party software QEMU depends on. The
supported platforms are the targets for automated testing performed by
the project when patches are submitted for review, and tested before and
after merge.

If a platform is not listed here, it does not imply that QEMU won’t
work. If an unlisted platform has comparable software versions to a
listed platform, there is every expectation that it will work. Bug
reports are welcome for problems encountered on unlisted platforms
unless they are clearly older vintage than what is described here.

Note that when considering software versions shipped in distros as
support targets, QEMU considers only the version number, and assumes the
features in that distro match the upstream release with the same
version. In other words, if a distro backports extra features to the
software in their distro, QEMU upstream code will not add explicit
support for those backports, unless the feature is auto-detectable in a
manner that works for the upstream releases too.

The Repology site https://repology.org is a useful resource to identify
currently shipped versions of software in various operating systems,
though it does not cover all distros listed below.

Linux OS

For distributions with frequent, short-lifetime releases, the project
will aim to support all versions that are not end of life by their
respective vendors. For the purposes of identifying supported software
versions, the project will look at Fedora, Ubuntu, and openSUSE distros.
Other short- lifetime distros will be assumed to ship similar software
versions.

For distributions with long-lifetime releases, the project will aim to
support the most recent major version at all times. Support for the
previous major version will be dropped 2 years after the new major
version is released, or when it reaches “end of life”. For the purposes
of identifying supported software versions, the project will look at
RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros
will be assumed to ship similar software versions.

Windows

The project supports building with current versions of the MinGW
toolchain, hosted on Linux.

macOS

The project supports building with the two most recent versions of
macOS, with the current homebrew package set available.

FreeBSD

The project aims to support the all the versions which are not end of
life.

NetBSD

The project aims to support the most recent major version at all times.
Support for the previous major version will be dropped 2 years after the
new major version is released.

OpenBSD

The project aims to support the all the versions which are not end of
life.

License

QEMU is a trademark of Fabrice Bellard.

QEMU is released under the GNU General Public
License [https://www.gnu.org/licenses/gpl-2.0.txt], version 2. Parts
of QEMU have specific licenses, see file
LICENSE [https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE].

QEMU Tools Guide

Contents:

	QEMU disk image utility
	Synopsis

	Description

	Options

	Notes

	QEMU Disk Network Block Device Server
	Synopsis

	Description

	Options

	Examples

	See also

	QEMU SystemTap trace tool
	Synopsis

	Description

	Options

	See also

	QEMU 9p virtfs proxy filesystem helper
	Synopsis

	Description

	Options

	QEMU virtio-fs shared file system daemon
	Synopsis

	Description

	Options

	Examples

QEMU disk image utility

Synopsis

qemu-img [standard options] command [command options]

Description

qemu-img allows you to create, convert and modify images offline. It can handle
all image formats supported by QEMU.

Warning: Never use qemu-img to modify images in use by a running virtual
machine or any other process; this may destroy the image. Also, be aware that
querying an image that is being modified by another process may encounter
inconsistent state.

Options

Standard options:

	
-h, --help

	Display this help and exit

	
-V, --version

	Display version information and exit

	
-T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]

	Specify tracing options.

	
[enable=]PATTERN

	Immediately enable events matching PATTERN
(either event name or a globbing pattern). This option is only
available if QEMU has been compiled with the simple, log
or ftrace tracing backend. To specify multiple events or patterns,
specify the -trace option multiple times.

Use -trace help to print a list of names of trace points.

	
events=FILE

	Immediately enable events listed in FILE.
The file must contain one event name (as listed in the trace-events-all
file) per line; globbing patterns are accepted too. This option is only
available if QEMU has been compiled with the simple, log or
ftrace tracing backend.

	
file=FILE

	Log output traces to FILE.
This option is only available if QEMU has been compiled with
the simple tracing backend.

The following commands are supported:

	
amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE] -o OPTIONS FILENAME

	

	
bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL] [-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME

	

	
check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT] [-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME

	

	
commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b BASE] [-d] [-p] FILENAME

	

	
compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2

	

	
convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] [--salvage] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

	

	
create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]

	

	
dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE] [count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT

	

	
info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [--backing-chain] [-U] FILENAME

	

	
map [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [-U] FILENAME

	

	
measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N | [--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM] FILENAME]

	

	
snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME

	

	
rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT] FILENAME

	

	
resize [--object OBJECTDEF] [--image-opts] [-f FMT] [--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE

	

Command parameters:

FILENAME is a disk image filename.

FMT is the disk image format. It is guessed automatically in most
cases. See below for a description of the supported disk formats.

SIZE is the disk image size in bytes. Optional suffixes k or
K (kilobyte, 1024) M (megabyte, 1024k) and G (gigabyte,
1024M) and T (terabyte, 1024G) are supported. b is ignored.

OUTPUT_FILENAME is the destination disk image filename.

OUTPUT_FMT is the destination format.

OPTIONS is a comma separated list of format specific options in a
name=value format. Use -o ? for an overview of the options supported
by the used format or see the format descriptions below for details.

SNAPSHOT_PARAM is param used for internal snapshot, format is
‘snapshot.id=[ID],snapshot.name=[NAME]’ or ‘[ID_OR_NAME]’.

	
--object OBJECTDEF

	is a QEMU user creatable object definition. See the qemu(1)
manual page for a description of the object properties. The most common
object type is a secret, which is used to supply passwords and/or
encryption keys.

	
--image-opts

	Indicates that the source FILENAME parameter is to be interpreted as a
full option string, not a plain filename. This parameter is mutually
exclusive with the -f parameter.

	
--target-image-opts

	Indicates that the OUTPUT_FILENAME parameter(s) are to be interpreted as
a full option string, not a plain filename. This parameter is mutually
exclusive with the -O parameters. It is currently required to also use
the -n parameter to skip image creation. This restriction may be relaxed
in a future release.

	
--force-share (-U)

	If specified, qemu-img will open the image in shared mode, allowing
other QEMU processes to open it in write mode. For example, this can be used to
get the image information (with ‘info’ subcommand) when the image is used by a
running guest. Note that this could produce inconsistent results because of
concurrent metadata changes, etc. This option is only allowed when opening
images in read-only mode.

	
--backing-chain

	Will enumerate information about backing files in a disk image chain. Refer
below for further description.

	
-c

	Indicates that target image must be compressed (qcow format only).

	
-h

	With or without a command, shows help and lists the supported formats.

	
-p

	Display progress bar (compare, convert and rebase commands only).
If the -p option is not used for a command that supports it, the
progress is reported when the process receives a SIGUSR1 or
SIGINFO signal.

	
-q

	Quiet mode - do not print any output (except errors). There’s no progress bar
in case both -q and -p options are used.

	
-S SIZE

	Indicates the consecutive number of bytes that must contain only zeros
for qemu-img to create a sparse image during conversion. This value is rounded
down to the nearest 512 bytes. You may use the common size suffixes like
k for kilobytes.

	
-t CACHE

	Specifies the cache mode that should be used with the (destination) file. See
the documentation of the emulator’s -drive cache=... option for allowed
values.

	
-T SRC_CACHE

	Specifies the cache mode that should be used with the source file(s). See
the documentation of the emulator’s -drive cache=... option for allowed
values.

Parameters to snapshot subcommand:

	
snapshot

	Is the name of the snapshot to create, apply or delete

	
-a

	Applies a snapshot (revert disk to saved state)

	
-c

	Creates a snapshot

	
-d

	Deletes a snapshot

	
-l

	Lists all snapshots in the given image

Parameters to compare subcommand:

	
-f

	First image format

	
-F

	Second image format

	
-s

	Strict mode - fail on different image size or sector allocation

Parameters to convert subcommand:

	
-n

	Skip the creation of the target volume

	
-m

	Number of parallel coroutines for the convert process

	
-W

	Allow out-of-order writes to the destination. This option improves performance,
but is only recommended for preallocated devices like host devices or other
raw block devices.

	
-C

	Try to use copy offloading to move data from source image to target. This may
improve performance if the data is remote, such as with NFS or iSCSI backends,
but will not automatically sparsify zero sectors, and may result in a fully
allocated target image depending on the host support for getting allocation
information.

	
--salvage

	Try to ignore I/O errors when reading. Unless in quiet mode (-q), errors
will still be printed. Areas that cannot be read from the source will be
treated as containing only zeroes.

	
--target-is-zero

	Assume that reading the destination image will always return
zeros. This parameter is mutually exclusive with a destination image
that has a backing file. It is required to also use the -n
parameter to skip image creation.

Parameters to dd subcommand:

	
bs=BLOCK_SIZE

	Defines the block size

	
count=BLOCKS

	Sets the number of input blocks to copy

	
if=INPUT

	Sets the input file

	
of=OUTPUT

	Sets the output file

	
skip=BLOCKS

	Sets the number of input blocks to skip

Command description:

	
amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE] -o OPTIONS FILENAME

	Amends the image format specific OPTIONS for the image file
FILENAME. Not all file formats support this operation.

	
bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL] [-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME

	Run a simple sequential I/O benchmark on the specified image. If -w is
specified, a write test is performed, otherwise a read test is performed.

A total number of COUNT I/O requests is performed, each BUFFER_SIZE
bytes in size, and with DEPTH requests in parallel. The first request
starts at the position given by OFFSET, each following request increases
the current position by STEP_SIZE. If STEP_SIZE is not given,
BUFFER_SIZE is used for its value.

If FLUSH_INTERVAL is specified for a write test, the request queue is
drained and a flush is issued before new writes are made whenever the number of
remaining requests is a multiple of FLUSH_INTERVAL. If additionally
--no-drain is specified, a flush is issued without draining the request
queue first.

if -i is specified, AIO option can be used to specify different
AIO backends: threads, native or io_uring.

If -n is specified, the native AIO backend is used if possible. On
Linux, this option only works if -t none or -t directsync is
specified as well.

For write tests, by default a buffer filled with zeros is written. This can be
overridden with a pattern byte specified by PATTERN.

	
check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT] [-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME

	Perform a consistency check on the disk image FILENAME. The command can
output in the format OFMT which is either human or json.
The JSON output is an object of QAPI type ImageCheck.

If -r is specified, qemu-img tries to repair any inconsistencies found
during the check. -r leaks repairs only cluster leaks, whereas
-r all fixes all kinds of errors, with a higher risk of choosing the
wrong fix or hiding corruption that has already occurred.

Only the formats qcow2, qed and vdi support
consistency checks.

In case the image does not have any inconsistencies, check exits with 0.
Other exit codes indicate the kind of inconsistency found or if another error
occurred. The following table summarizes all exit codes of the check subcommand:

	0

	Check completed, the image is (now) consistent

	1

	Check not completed because of internal errors

	2

	Check completed, image is corrupted

	3

	Check completed, image has leaked clusters, but is not corrupted

	63

	Checks are not supported by the image format

If -r is specified, exit codes representing the image state refer to the
state after (the attempt at) repairing it. That is, a successful -r all
will yield the exit code 0, independently of the image state before.

	
commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b BASE] [-d] [-p] FILENAME

	Commit the changes recorded in FILENAME in its base image or backing file.
If the backing file is smaller than the snapshot, then the backing file will be
resized to be the same size as the snapshot. If the snapshot is smaller than
the backing file, the backing file will not be truncated. If you want the
backing file to match the size of the smaller snapshot, you can safely truncate
it yourself once the commit operation successfully completes.

The image FILENAME is emptied after the operation has succeeded. If you do
not need FILENAME afterwards and intend to drop it, you may skip emptying
FILENAME by specifying the -d flag.

If the backing chain of the given image file FILENAME has more than one
layer, the backing file into which the changes will be committed may be
specified as BASE (which has to be part of FILENAME’s backing
chain). If BASE is not specified, the immediate backing file of the top
image (which is FILENAME) will be used. Note that after a commit operation
all images between BASE and the top image will be invalid and may return
garbage data when read. For this reason, -b implies -d (so that
the top image stays valid).

	
compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2

	Check if two images have the same content. You can compare images with
different format or settings.

The format is probed unless you specify it by -f (used for
FILENAME1) and/or -F (used for FILENAME2) option.

By default, images with different size are considered identical if the larger
image contains only unallocated and/or zeroed sectors in the area after the end
of the other image. In addition, if any sector is not allocated in one image
and contains only zero bytes in the second one, it is evaluated as equal. You
can use Strict mode by specifying the -s option. When compare runs in
Strict mode, it fails in case image size differs or a sector is allocated in
one image and is not allocated in the second one.

By default, compare prints out a result message. This message displays
information that both images are same or the position of the first different
byte. In addition, result message can report different image size in case
Strict mode is used.

Compare exits with 0 in case the images are equal and with 1
in case the images differ. Other exit codes mean an error occurred during
execution and standard error output should contain an error message.
The following table sumarizes all exit codes of the compare subcommand:

	0

	Images are identical

	1

	Images differ

	2

	Error on opening an image

	3

	Error on checking a sector allocation

	4

	Error on reading data

	
convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

	Convert the disk image FILENAME or a snapshot SNAPSHOT_PARAM
to disk image OUTPUT_FILENAME using format OUTPUT_FMT. It can
be optionally compressed (-c option) or use any format specific
options like encryption (-o option).

Only the formats qcow and qcow2 support compression. The
compression is read-only. It means that if a compressed sector is
rewritten, then it is rewritten as uncompressed data.

Image conversion is also useful to get smaller image when using a
growable format such as qcow: the empty sectors are detected and
suppressed from the destination image.

SPARSE_SIZE indicates the consecutive number of bytes (defaults to 4k)
that must contain only zeros for qemu-img to create a sparse image during
conversion. If SPARSE_SIZE is 0, the source will not be scanned for
unallocated or zero sectors, and the destination image will always be
fully allocated.

You can use the BACKING_FILE option to force the output image to be
created as a copy on write image of the specified base image; the
BACKING_FILE should have the same content as the input’s base image,
however the path, image format, etc may differ.

If a relative path name is given, the backing file is looked up relative to
the directory containing OUTPUT_FILENAME.

If the -n option is specified, the target volume creation will be
skipped. This is useful for formats such as rbd if the target
volume has already been created with site specific options that cannot
be supplied through qemu-img.

Out of order writes can be enabled with -W to improve performance.
This is only recommended for preallocated devices like host devices or other
raw block devices. Out of order write does not work in combination with
creating compressed images.

NUM_COROUTINES specifies how many coroutines work in parallel during
the convert process (defaults to 8).

	
create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]

	Create the new disk image FILENAME of size SIZE and format
FMT. Depending on the file format, you can add one or more OPTIONS
that enable additional features of this format.

If the option BACKING_FILE is specified, then the image will record
only the differences from BACKING_FILE. No size needs to be specified in
this case. BACKING_FILE will never be modified unless you use the
commit monitor command (or qemu-img commit).

If a relative path name is given, the backing file is looked up relative to
the directory containing FILENAME.

Note that a given backing file will be opened to check that it is valid. Use
the -u option to enable unsafe backing file mode, which means that the
image will be created even if the associated backing file cannot be opened. A
matching backing file must be created or additional options be used to make the
backing file specification valid when you want to use an image created this
way.

The size can also be specified using the SIZE option with -o,
it doesn’t need to be specified separately in this case.

	
dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE] [count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT

	dd copies from INPUT file to OUTPUT file converting it from
FMT format to OUTPUT_FMT format.

The data is by default read and written using blocks of 512 bytes but can be
modified by specifying BLOCK_SIZE. If count=BLOCKS is specified
dd will stop reading input after reading BLOCKS input blocks.

The size syntax is similar to dd(1)’s size syntax.

	
info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [--backing-chain] [-U] FILENAME

	Give information about the disk image FILENAME. Use it in
particular to know the size reserved on disk which can be different
from the displayed size. If VM snapshots are stored in the disk image,
they are displayed too.

If a disk image has a backing file chain, information about each disk image in
the chain can be recursively enumerated by using the option --backing-chain.

For instance, if you have an image chain like:

base.qcow2 <- snap1.qcow2 <- snap2.qcow2

To enumerate information about each disk image in the above chain, starting from top to base, do:

qemu-img info --backing-chain snap2.qcow2

The command can output in the format OFMT which is either human or
json. The JSON output is an object of QAPI type ImageInfo; with
--backing-chain, it is an array of ImageInfo objects.

--output=human reports the following information (for every image in the
chain):

	image

	The image file name

	file format

	The image format

	virtual size

	The size of the guest disk

	disk size

	How much space the image file occupies on the host file system (may be
shown as 0 if this information is unavailable, e.g. because there is no
file system)

	cluster_size

	Cluster size of the image format, if applicable

	encrypted

	Whether the image is encrypted (only present if so)

	cleanly shut down

	This is shown as no if the image is dirty and will have to be
auto-repaired the next time it is opened in qemu.

	backing file

	The backing file name, if present

	backing file format

	The format of the backing file, if the image enforces it

	Snapshot list

	A list of all internal snapshots

	Format specific information

	Further information whose structure depends on the image format. This
section is a textual representation of the respective
ImageInfoSpecific* QAPI object (e.g. ImageInfoSpecificQCow2
for qcow2 images).

	
map [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [-U] FILENAME

	Dump the metadata of image FILENAME and its backing file chain.
In particular, this commands dumps the allocation state of every sector
of FILENAME, together with the topmost file that allocates it in
the backing file chain.

Two option formats are possible. The default format (human)
only dumps known-nonzero areas of the file. Known-zero parts of the
file are omitted altogether, and likewise for parts that are not allocated
throughout the chain. qemu-img output will identify a file
from where the data can be read, and the offset in the file. Each line
will include four fields, the first three of which are hexadecimal
numbers. For example the first line of:

Offset Length Mapped to File
0 0x20000 0x50000 /tmp/overlay.qcow2
0x100000 0x10000 0x95380000 /tmp/backing.qcow2

means that 0x20000 (131072) bytes starting at offset 0 in the image are
available in /tmp/overlay.qcow2 (opened in raw format) starting
at offset 0x50000 (327680). Data that is compressed, encrypted, or
otherwise not available in raw format will cause an error if human
format is in use. Note that file names can include newlines, thus it is
not safe to parse this output format in scripts.

The alternative format json will return an array of dictionaries
in JSON format. It will include similar information in
the start, length, offset fields;
it will also include other more specific information:

	whether the sectors contain actual data or not (boolean field data;
if false, the sectors are either unallocated or stored as optimized
all-zero clusters);

	whether the data is known to read as zero (boolean field zero);

	in order to make the output shorter, the target file is expressed as
a depth; for example, a depth of 2 refers to the backing file
of the backing file of FILENAME.

In JSON format, the offset field is optional; it is absent in
cases where human format would omit the entry or exit with an error.
If data is false and the offset field is present, the
corresponding sectors in the file are not yet in use, but they are
preallocated.

For more information, consult include/block/block.h in QEMU’s
source code.

	
measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N | [--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM] FILENAME]

	Calculate the file size required for a new image. This information
can be used to size logical volumes or SAN LUNs appropriately for
the image that will be placed in them. The values reported are
guaranteed to be large enough to fit the image. The command can
output in the format OFMT which is either human or json.
The JSON output is an object of QAPI type BlockMeasureInfo.

If the size N is given then act as if creating a new empty image file
using qemu-img create. If FILENAME is given then act as if
converting an existing image file using qemu-img convert. The format
of the new file is given by OUTPUT_FMT while the format of an existing
file is given by FMT.

A snapshot in an existing image can be specified using SNAPSHOT_PARAM.

The following fields are reported:

required size: 524288
fully allocated size: 1074069504

The required size is the file size of the new image. It may be smaller
than the virtual disk size if the image format supports compact representation.

The fully allocated size is the file size of the new image once data has
been written to all sectors. This is the maximum size that the image file can
occupy with the exception of internal snapshots, dirty bitmaps, vmstate data,
and other advanced image format features.

	
snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME

	List, apply, create or delete snapshots in image FILENAME.

	
rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT] FILENAME

	Changes the backing file of an image. Only the formats qcow2 and
qed support changing the backing file.

The backing file is changed to BACKING_FILE and (if the image format of
FILENAME supports this) the backing file format is changed to
BACKING_FMT. If BACKING_FILE is specified as “” (the empty
string), then the image is rebased onto no backing file (i.e. it will exist
independently of any backing file).

If a relative path name is given, the backing file is looked up relative to
the directory containing FILENAME.

CACHE specifies the cache mode to be used for FILENAME, whereas
SRC_CACHE specifies the cache mode for reading backing files.

There are two different modes in which rebase can operate:

	Safe mode

	This is the default mode and performs a real rebase operation. The
new backing file may differ from the old one and qemu-img rebase
will take care of keeping the guest-visible content of FILENAME
unchanged.

In order to achieve this, any clusters that differ between
BACKING_FILE and the old backing file of FILENAME are merged
into FILENAME before actually changing the backing file.

Note that the safe mode is an expensive operation, comparable to
converting an image. It only works if the old backing file still
exists.

	Unsafe mode

	qemu-img uses the unsafe mode if -u is specified. In this
mode, only the backing file name and format of FILENAME is changed
without any checks on the file contents. The user must take care of
specifying the correct new backing file, or the guest-visible
content of the image will be corrupted.

This mode is useful for renaming or moving the backing file to
somewhere else. It can be used without an accessible old backing
file, i.e. you can use it to fix an image whose backing file has
already been moved/renamed.

You can use rebase to perform a “diff” operation on two
disk images. This can be useful when you have copied or cloned
a guest, and you want to get back to a thin image on top of a
template or base image.

Say that base.img has been cloned as modified.img by
copying it, and that the modified.img guest has run so there
are now some changes compared to base.img. To construct a thin
image called diff.qcow2 that contains just the differences, do:

qemu-img create -f qcow2 -b modified.img diff.qcow2
qemu-img rebase -b base.img diff.qcow2

At this point, modified.img can be discarded, since
base.img + diff.qcow2 contains the same information.

	
resize [--object OBJECTDEF] [--image-opts] [-f FMT] [--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE

	Change the disk image as if it had been created with SIZE.

Before using this command to shrink a disk image, you MUST use file system and
partitioning tools inside the VM to reduce allocated file systems and partition
sizes accordingly. Failure to do so will result in data loss!

When shrinking images, the --shrink option must be given. This informs
qemu-img that the user acknowledges all loss of data beyond the truncated
image’s end.

After using this command to grow a disk image, you must use file system and
partitioning tools inside the VM to actually begin using the new space on the
device.

When growing an image, the --preallocation option may be used to specify
how the additional image area should be allocated on the host. See the format
description in the Notes section which values are allowed. Using this
option may result in slightly more data being allocated than necessary.

Notes

Supported image file formats:

raw

Raw disk image format (default). This format has the advantage of
being simple and easily exportable to all other emulators. If your
file system supports holes (for example in ext2 or ext3 on
Linux or NTFS on Windows), then only the written sectors will reserve
space. Use qemu-img info to know the real size used by the
image or ls -ls on Unix/Linux.

Supported options:

	preallocation

	Preallocation mode (allowed values: off, falloc,
full). falloc mode preallocates space for image by
calling posix_fallocate(). full mode preallocates space
for image by writing data to underlying storage. This data may or
may not be zero, depending on the storage location.

qcow2

QEMU image format, the most versatile format. Use it to have smaller
images (useful if your filesystem does not supports holes, for example
on Windows), optional AES encryption, zlib based compression and
support of multiple VM snapshots.

Supported options:

	compat

	Determines the qcow2 version to use. compat=0.10 uses the
traditional image format that can be read by any QEMU since 0.10.
compat=1.1 enables image format extensions that only QEMU 1.1 and
newer understand (this is the default). Amongst others, this includes zero
clusters, which allow efficient copy-on-read for sparse images.

	backing_file

	File name of a base image (see create subcommand)

	backing_fmt

	Image format of the base image

	encryption

	If this option is set to on, the image is encrypted with
128-bit AES-CBC.

The use of encryption in qcow and qcow2 images is considered to be
flawed by modern cryptography standards, suffering from a number
of design problems:

	The AES-CBC cipher is used with predictable initialization
vectors based on the sector number. This makes it vulnerable to
chosen plaintext attacks which can reveal the existence of
encrypted data.

	The user passphrase is directly used as the encryption key. A
poorly chosen or short passphrase will compromise the security
of the encryption.

	In the event of the passphrase being compromised there is no way
to change the passphrase to protect data in any qcow images. The
files must be cloned, using a different encryption passphrase in
the new file. The original file must then be securely erased
using a program like shred, though even this is ineffective with
many modern storage technologies.

	Initialization vectors used to encrypt sectors are based on the
guest virtual sector number, instead of the host physical
sector. When a disk image has multiple internal snapshots this
means that data in multiple physical sectors is encrypted with
the same initialization vector. With the CBC mode, this opens
the possibility of watermarking attacks if the attack can
collect multiple sectors encrypted with the same IV and some
predictable data. Having multiple qcow2 images with the same
passphrase also exposes this weakness since the passphrase is
directly used as the key.

Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
recommended to use an alternative encryption technology such as the
Linux dm-crypt / LUKS system.

	cluster_size

	Changes the qcow2 cluster size (must be between 512 and
2M). Smaller cluster sizes can improve the image file size whereas
larger cluster sizes generally provide better performance.

	preallocation

	Preallocation mode (allowed values: off, metadata,
falloc, full). An image with preallocated metadata is
initially larger but can improve performance when the image needs
to grow. falloc and full preallocations are like the same
options of raw format, but sets up metadata also.

	lazy_refcounts

	If this option is set to on, reference count updates are
postponed with the goal of avoiding metadata I/O and improving
performance. This is particularly interesting with
cache=writethrough which doesn’t batch metadata
updates. The tradeoff is that after a host crash, the reference
count tables must be rebuilt, i.e. on the next open an (automatic)
qemu-img check -r all is required, which may take some time.

This option can only be enabled if compat=1.1 is specified.

	nocow

	If this option is set to on, it will turn off COW of the file. It’s
only valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more
when the guest on the VM also using btrfs as file system. Turning
off COW is a way to mitigate this bad performance. Generally there
are two ways to turn off COW on btrfs:

	Disable it by mounting with nodatacow, then all newly created files
will be NOCOW

	For an empty file, add the NOCOW file attribute. That’s what this
option does.

Note: this option is only valid to new or empty files. If there is
an existing file which is COW and has data blocks already, it
couldn’t be changed to NOCOW by setting nocow=on. One can
issue lsattr filename to check if the NOCOW flag is set or not
(Capital ‘C’ is NOCOW flag).

Other

QEMU also supports various other image file formats for
compatibility with older QEMU versions or other hypervisors,
including VMDK, VDI, VHD (vpc), VHDX, qcow1 and QED. For a full list
of supported formats see qemu-img --help. For a more detailed
description of these formats, see the QEMU block drivers reference
documentation.

The main purpose of the block drivers for these formats is image
conversion. For running VMs, it is recommended to convert the disk
images to either raw or qcow2 in order to achieve good performance.

QEMU Disk Network Block Device Server

Synopsis

qemu-nbd [OPTION]… filename

qemu-nbd -L [OPTION]…

qemu-nbd -d dev

Description

Export a QEMU disk image using the NBD protocol.

Other uses:

	Bind a /dev/nbdX block device to a QEMU server (on Linux).

	As a client to query exports of a remote NBD server.

Options

filename is a disk image filename, or a set of block
driver options if --image-opts is specified.

dev is an NBD device.

	
--object type,id=ID,...props...

	Define a new instance of the type object class identified by ID.
See the qemu(1) manual page for full details of the properties
supported. The common object types that it makes sense to define are the
secret object, which is used to supply passwords and/or encryption
keys, and the tls-creds object, which is used to supply TLS
credentials for the qemu-nbd server or client.

	
-p, --port=PORT

	TCP port to listen on as a server, or connect to as a client
(default 10809).

	
-o, --offset=OFFSET

	The offset into the image.

	
-b, --bind=IFACE

	The interface to bind to as a server, or connect to as a client
(default 0.0.0.0).

	
-k, --socket=PATH

	Use a unix socket with path PATH.

	
--image-opts

	Treat filename as a set of image options, instead of a plain
filename. If this flag is specified, the -f flag should
not be used, instead the format= option should be set.

	
-f, --format=FMT

	Force the use of the block driver for format FMT instead of
auto-detecting.

	
-r, --read-only

	Export the disk as read-only.

	
-B, --bitmap=NAME

	If filename has a qcow2 persistent bitmap NAME, expose
that bitmap via the qemu:dirty-bitmap:NAME context
accessible through NBD_OPT_SET_META_CONTEXT.

	
-s, --snapshot

	Use filename as an external snapshot, create a temporary
file with backing_file=filename, redirect the write to
the temporary one.

	
-l, --load-snapshot=SNAPSHOT_PARAM

	Load an internal snapshot inside filename and export it
as an read-only device, SNAPSHOT_PARAM format is
snapshot.id=[ID],snapshot.name=[NAME] or [ID_OR_NAME]

	
--cache=CACHE

	The cache mode to be used with the file. See the documentation of
the emulator’s -drive cache=... option for allowed values.

	
-n, --nocache

	Equivalent to --cache=none.

	
--aio=AIO

	Set the asynchronous I/O mode between threads (the default),
native (Linux only), and io_uring (Linux 5.1+).

	
--discard=DISCARD

	Control whether discard (also known as trim or unmap)
requests are ignored or passed to the filesystem. DISCARD is one of
ignore (or off), unmap (or on). The default is
ignore.

	
--detect-zeroes=DETECT_ZEROES

	Control the automatic conversion of plain zero writes by the OS to
driver-specific optimized zero write commands. DETECT_ZEROES is one of
off, on, or unmap. unmap
converts a zero write to an unmap operation and can only be used if
DISCARD is set to unmap. The default is off.

	
-c, --connect=DEV

	Connect filename to NBD device DEV (Linux only).

	
-d, --disconnect

	Disconnect the device DEV (Linux only).

	
-e, --shared=NUM

	Allow up to NUM clients to share the device (default
1). Safe for readers, but for now, consistency is not
guaranteed between multiple writers.

	
-t, --persistent

	Don’t exit on the last connection.

	
-x, --export-name=NAME

	Set the NBD volume export name (default of a zero-length string).

	
-D, --description=DESCRIPTION

	Set the NBD volume export description, as a human-readable
string.

	
-L, --list

	Connect as a client and list all details about the exports exposed by
a remote NBD server. This enables list mode, and is incompatible
with options that change behavior related to a specific export (such as
--export-name, --offset, …).

	
--tls-creds=ID

	Enable mandatory TLS encryption for the server by setting the ID
of the TLS credentials object previously created with the –object
option; or provide the credentials needed for connecting as a client
in list mode.

	
--fork

	Fork off the server process and exit the parent once the server is running.

	
--pid-file=PATH

	Store the server’s process ID in the given file.

	
--tls-authz=ID

	Specify the ID of a qauthz object previously created with the
--object option. This will be used to authorize connecting users
against their x509 distinguished name.

	
-v, --verbose

	Display extra debugging information.

	
-h, --help

	Display this help and exit.

	
-V, --version

	Display version information and exit.

	
-T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]

	Specify tracing options.

	
[enable=]PATTERN

	Immediately enable events matching PATTERN
(either event name or a globbing pattern). This option is only
available if QEMU has been compiled with the simple, log
or ftrace tracing backend. To specify multiple events or patterns,
specify the -trace option multiple times.

Use -trace help to print a list of names of trace points.

	
events=FILE

	Immediately enable events listed in FILE.
The file must contain one event name (as listed in the trace-events-all
file) per line; globbing patterns are accepted too. This option is only
available if QEMU has been compiled with the simple, log or
ftrace tracing backend.

	
file=FILE

	Log output traces to FILE.
This option is only available if QEMU has been compiled with
the simple tracing backend.

Examples

Start a server listening on port 10809 that exposes only the
guest-visible contents of a qcow2 file, with no TLS encryption, and
with the default export name (an empty string). The command is
one-shot, and will block until the first successful client
disconnects:

qemu-nbd -f qcow2 file.qcow2

Start a long-running server listening with encryption on port 10810,
and whitelist clients with a specific X.509 certificate to connect to
a 1 megabyte subset of a raw file, using the export name ‘subset’:

qemu-nbd \
 --object tls-creds-x509,id=tls0,endpoint=server,dir=/path/to/qemutls \
 --object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,\
 O=Example Org,,L=London,,ST=London,,C=GB' \
 --tls-creds tls0 --tls-authz auth0 \
 -t -x subset -p 10810 \
 --image-opts driver=raw,offset=1M,size=1M,file.driver=file,file.filename=file.raw

Serve a read-only copy of a guest image over a Unix socket with as
many as 5 simultaneous readers, with a persistent process forked as a
daemon:

qemu-nbd --fork --persistent --shared=5 --socket=/path/to/sock \
 --read-only --format=qcow2 file.qcow2

Expose the guest-visible contents of a qcow2 file via a block device
/dev/nbd0 (and possibly creating /dev/nbd0p1 and friends for
partitions found within), then disconnect the device when done.
Access to bind qemu-nbd to an /dev/nbd device generally requires root
privileges, and may also require the execution of modprobe nbd
to enable the kernel NBD client module. CAUTION: Do not use
this method to mount filesystems from an untrusted guest image - a
malicious guest may have prepared the image to attempt to trigger
kernel bugs in partition probing or file system mounting.

qemu-nbd -c /dev/nbd0 -f qcow2 file.qcow2
qemu-nbd -d /dev/nbd0

Query a remote server to see details about what export(s) it is
serving on port 10809, and authenticating via PSK:

qemu-nbd \
 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=eblake,endpoint=client \
 --tls-creds tls0 -L -b remote.example.com

See also

qemu(1), qemu-img(1)

QEMU SystemTap trace tool

Synopsis

qemu-trace-stap [GLOBAL-OPTIONS] COMMAND [COMMAND-OPTIONS] ARGS…

Description

The qemu-trace-stap program facilitates tracing of the execution
of QEMU emulators using SystemTap.

It is required to have the SystemTap runtime environment installed to use
this program, since it is a wrapper around execution of the stap
program.

Options

The following global options may be used regardless of which command
is executed:

	
--verbose, -v

	Display verbose information about command execution.

The following commands are valid:

	
list BINARY PATTERN...

	List all the probe names provided by BINARY that match
PATTERN.

If BINARY is not an absolute path, it will be located by searching
the directories listed in the $PATH environment variable.

PATTERN is a plain string that is used to filter the results of
this command. It may optionally contain a * wildcard to facilitate
matching multiple probes without listing each one explicitly. Multiple
PATTERN arguments may be given, causing listing of probes that match
any of the listed names. If no PATTERN is given, the all possible
probes will be listed.

For example, to list all probes available in the qemu-system-x86_64
binary:

$ qemu-trace-stap list qemu-system-x86_64

To filter the list to only cover probes related to QEMU’s cryptographic
subsystem, in a binary outside $PATH

$ qemu-trace-stap list /opt/qemu/4.0.0/bin/qemu-system-x86_64 'qcrypto*'

	
run OPTIONS BINARY PATTERN...

	Run a trace session, printing formatted output any time a process that is
executing BINARY triggers a probe matching PATTERN.

If BINARY is not an absolute path, it will be located by searching
the directories listed in the $PATH environment variable.

PATTERN is a plain string that matches a probe name shown by the
LIST command. It may optionally contain a * wildcard to
facilitate matching multiple probes without listing each one explicitly.
Multiple PATTERN arguments may be given, causing all matching probes
to be monitored. At least one PATTERN is required, since stap is not
capable of tracing all known QEMU probes concurrently without overflowing
its trace buffer.

Invocation of this command does not need to be synchronized with
invocation of the QEMU process(es). It will match probes on all
existing running processes and all future launched processes,
unless told to only monitor a specific process.

Valid command specific options are:

	
--pid=PID, -p PID

	Restrict the tracing session so that it only triggers for the process
identified by PID.

For example, to monitor all processes executing qemu-system-x86_64
as found on $PATH, displaying all I/O related probes:

$ qemu-trace-stap run qemu-system-x86_64 'qio*'

To monitor only the QEMU process with PID 1732

$ qemu-trace-stap run --pid=1732 qemu-system-x86_64 'qio*'

To monitor QEMU processes running an alternative binary outside of
$PATH, displaying verbose information about setup of the
tracing environment:

$ qemu-trace-stap -v run /opt/qemu/4.0.0/qemu-system-x86_64 'qio*'

See also

qemu(1), stap(1)

QEMU 9p virtfs proxy filesystem helper

Synopsis

virtfs-proxy-helper [OPTIONS]

Description

Pass-through security model in QEMU 9p server needs root privilege to do
few file operations (like chown, chmod to any mode/uid:gid). There are two
issues in pass-through security model:

	TOCTTOU vulnerability: Following symbolic links in the server could
provide access to files beyond 9p export path.

	Running QEMU with root privilege could be a security issue.

To overcome above issues, following approach is used: A new filesystem
type ‘proxy’ is introduced. Proxy FS uses chroot + socket combination
for securing the vulnerability known with following symbolic links.
Intention of adding a new filesystem type is to allow qemu to run
in non-root mode, but doing privileged operations using socket IO.

Proxy helper (a stand alone binary part of qemu) is invoked with
root privileges. Proxy helper chroots into 9p export path and creates
a socket pair or a named socket based on the command line parameter.
QEMU and proxy helper communicate using this socket. QEMU proxy fs
driver sends filesystem request to proxy helper and receives the
response from it.

The proxy helper is designed so that it can drop root privileges except
for the capabilities needed for doing filesystem operations.

Options

The following options are supported:

	
-h

	Display help and exit

	
-p, --path PATH

	Path to export for proxy filesystem driver

	
-f, --fd SOCKET_ID

	Use given file descriptor as socket descriptor for communicating with
qemu proxy fs drier. Usually a helper like libvirt will create
socketpair and pass one of the fds as parameter to this option.

	
-s, --socket SOCKET_FILE

	Creates named socket file for communicating with qemu proxy fs driver

	
-u, --uid UID

	uid to give access to named socket file; used in combination with -g.

	
-g, --gid GID

	gid to give access to named socket file; used in combination with -u.

	
-n, --nodaemon

	Run as a normal program. By default program will run in daemon mode

QEMU virtio-fs shared file system daemon

Synopsis

virtiofsd [OPTIONS]

Description

Share a host directory tree with a guest through a virtio-fs device. This
program is a vhost-user backend that implements the virtio-fs device. Each
virtio-fs device instance requires its own virtiofsd process.

This program is designed to work with QEMU’s --device vhost-user-fs-pci
but should work with any virtual machine monitor (VMM) that supports
vhost-user. See the Examples section below.

This program must be run as the root user. Upon startup the program will
switch into a new file system namespace with the shared directory tree as its
root. This prevents “file system escapes” due to symlinks and other file
system objects that might lead to files outside the shared directory. The
program also sandboxes itself using seccomp(2) to prevent ptrace(2) and other
vectors that could allow an attacker to compromise the system after gaining
control of the virtiofsd process.

Options

	
-h, --help

	Print help.

	
-V, --version

	Print version.

	
-d

	Enable debug output.

	
--syslog

	Print log messages to syslog instead of stderr.

	
-o OPTION

	
	debug -
Enable debug output.

	flock|no_flock -
Enable/disable flock. The default is no_flock.

	log_level=LEVEL -
Print only log messages matching LEVEL or more severe. LEVEL is one of
err, warn, info, or debug. The default is info.

	norace -
Disable racy fallback. The default is false.

	posix_lock|no_posix_lock -
Enable/disable remote POSIX locks. The default is posix_lock.

	readdirplus|no_readdirplus -
Enable/disable readdirplus. The default is readdirplus.

	source=PATH -
Share host directory tree located at PATH. This option is required.

	timeout=TIMEOUT -
I/O timeout in seconds. The default depends on cache= option.

	writeback|no_writeback -
Enable/disable writeback cache. The cache alows the FUSE client to buffer
and merge write requests. The default is no_writeback.

	xattr|no_xattr -
Enable/disable extended attributes (xattr) on files and directories. The
default is no_xattr.

	
--socket-path=PATH

	Listen on vhost-user UNIX domain socket at PATH.

	
--fd=FDNUM

	Accept connections from vhost-user UNIX domain socket file descriptor FDNUM.
The file descriptor must already be listening for connections.

	
--thread-pool-size=NUM

	Restrict the number of worker threads per request queue to NUM. The default
is 64.

	
--cache=none|auto|always

	Select the desired trade-off between coherency and performance. none
forbids the FUSE client from caching to achieve best coherency at the cost of
performance. auto acts similar to NFS with a 1 second metadata cache
timeout. always sets a long cache lifetime at the expense of coherency.

Examples

Export /var/lib/fs/vm001/ on vhost-user UNIX domain socket
/var/run/vm001-vhost-fs.sock:

host# virtiofsd --socket-path=/var/run/vm001-vhost-fs.sock -o source=/var/lib/fs/vm001
host# qemu-system-x86_64 \
 -chardev socket,id=char0,path=/var/run/vm001-vhost-fs.sock \
 -device vhost-user-fs-pci,chardev=char0,tag=myfs \
 -object memory-backend-memfd,id=mem,size=4G,share=on \
 -numa node,memdev=mem \
 ...
guest# mount -t virtiofs myfs /mnt

QEMU User Mode Emulation User’s Guide

This manual is the overall guide for users using QEMU
for user-mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU.

Contents:

	QEMU User space emulator
	Supported Operating Systems

	Features

	Linux User space emulator

	BSD User space emulator

QEMU User space emulator

Supported Operating Systems

The following OS are supported in user space emulation:

	Linux (referred as qemu-linux-user)

	BSD (referred as qemu-bsd-user)

Features

QEMU user space emulation has the following notable features:

	System call translation:

	QEMU includes a generic system call translator. This means that the
parameters of the system calls can be converted to fix endianness and
32/64-bit mismatches between hosts and targets. IOCTLs can be
converted too.

	POSIX signal handling:

	QEMU can redirect to the running program all signals coming from the
host (such as SIGALRM), as well as synthesize signals from
virtual CPU exceptions (for example SIGFPE when the program
executes a division by zero).

QEMU relies on the host kernel to emulate most signal system calls,
for example to emulate the signal mask. On Linux, QEMU supports both
normal and real-time signals.

	Threading:

	On Linux, QEMU can emulate the clone syscall and create a real
host thread (with a separate virtual CPU) for each emulated thread.
Note that not all targets currently emulate atomic operations
correctly. x86 and ARM use a global lock in order to preserve their
semantics.

QEMU was conceived so that ultimately it can emulate itself. Although it
is not very useful, it is an important test to show the power of the
emulator.

Linux User space emulator

Quick Start

In order to launch a Linux process, QEMU needs the process executable
itself and all the target (x86) dynamic libraries used by it.

	On x86, you can just try to launch any process by using the native
libraries:

qemu-i386 -L / /bin/ls

-L / tells that the x86 dynamic linker must be searched with a
/ prefix.

	Since QEMU is also a linux process, you can launch QEMU with QEMU
(NOTE: you can only do that if you compiled QEMU from the sources):

qemu-i386 -L / qemu-i386 -L / /bin/ls

	On non x86 CPUs, you need first to download at least an x86 glibc
(qemu-runtime-i386-XXX-.tar.gz on the QEMU web page). Ensure that
LD_LIBRARY_PATH is not set:

unset LD_LIBRARY_PATH

Then you can launch the precompiled ls x86 executable:

qemu-i386 tests/i386/ls

You can look at scripts/qemu-binfmt-conf.sh so that QEMU is
automatically launched by the Linux kernel when you try to launch x86
executables. It requires the binfmt_misc module in the Linux
kernel.

	The x86 version of QEMU is also included. You can try weird things
such as:

qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
 /usr/local/qemu-i386/bin/ls-i386

Wine launch

	Ensure that you have a working QEMU with the x86 glibc distribution
(see previous section). In order to verify it, you must be able to
do:

qemu-i386 /usr/local/qemu-i386/bin/ls-i386

	Download the binary x86 Wine install (qemu-XXX-i386-wine.tar.gz
on the QEMU web page).

	Configure Wine on your account. Look at the provided script
/usr/local/qemu-i386/bin/wine-conf.sh. Your previous
${HOME}/.wine directory is saved to ${HOME}/.wine.org.

	Then you can try the example putty.exe:

qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe

Command line options

qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]

	-h

	Print the help

	-L path

	Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)

	-s size

	Set the x86 stack size in bytes (default=524288)

	-cpu model

	Select CPU model (-cpu help for list and additional feature
selection)

	-E var=value

	Set environment var to value.

	-U var

	Remove var from the environment.

	-B offset

	Offset guest address by the specified number of bytes. This is useful
when the address region required by guest applications is reserved on
the host. This option is currently only supported on some hosts.

	-R size

	Pre-allocate a guest virtual address space of the given size (in
bytes). “G”, “M”, and “k” suffixes may be used when specifying
the size.

Debug options:

	-d item1,...

	Activate logging of the specified items (use ‘-d help’ for a list of
log items)

	-p pagesize

	Act as if the host page size was ‘pagesize’ bytes

	-g port

	Wait gdb connection to port

	-singlestep

	Run the emulation in single step mode.

Environment variables:

	QEMU_STRACE

	Print system calls and arguments similar to the ‘strace’ program
(NOTE: the actual ‘strace’ program will not work because the user
space emulator hasn’t implemented ptrace). At the moment this is
incomplete. All system calls that don’t have a specific argument
format are printed with information for six arguments. Many
flag-style arguments don’t have decoders and will show up as numbers.

Other binaries

user mode (Alpha)
qemu-alpha TODO.

user mode (ARM)
qemu-armeb TODO.

user mode (ARM)
qemu-arm is also capable of running ARM “Angel” semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.

user mode (ColdFire)
user mode (M68K)
qemu-m68k is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.

The binary format is detected automatically.

user mode (Cris)
qemu-cris TODO.

user mode (i386)
qemu-i386 TODO. qemu-x86_64 TODO.

user mode (Microblaze)
qemu-microblaze TODO.

user mode (MIPS)
qemu-mips executes 32-bit big endian MIPS binaries (MIPS O32 ABI).

qemu-mipsel executes 32-bit little endian MIPS binaries (MIPS O32
ABI).

qemu-mips64 executes 64-bit big endian MIPS binaries (MIPS N64 ABI).

qemu-mips64el executes 64-bit little endian MIPS binaries (MIPS N64
ABI).

qemu-mipsn32 executes 32-bit big endian MIPS binaries (MIPS N32
ABI).

qemu-mipsn32el executes 32-bit little endian MIPS binaries (MIPS N32
ABI).

user mode (NiosII)
qemu-nios2 TODO.

user mode (PowerPC)
qemu-ppc64abi32 TODO. qemu-ppc64 TODO. qemu-ppc TODO.

user mode (SH4)
qemu-sh4eb TODO. qemu-sh4 TODO.

user mode (SPARC)
qemu-sparc can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).

qemu-sparc32plus can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).

qemu-sparc64 can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).

BSD User space emulator

BSD Status

	target Sparc64 on Sparc64: Some trivial programs work.

Quick Start

In order to launch a BSD process, QEMU needs the process executable
itself and all the target dynamic libraries used by it.

	On Sparc64, you can just try to launch any process by using the
native libraries:

qemu-sparc64 /bin/ls

Command line options

qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]

	-h

	Print the help

	-L path

	Set the library root path (default=/)

	-s size

	Set the stack size in bytes (default=524288)

	-ignore-environment

	Start with an empty environment. Without this option, the initial
environment is a copy of the caller’s environment.

	-E var=value

	Set environment var to value.

	-U var

	Remove var from the environment.

	-bsd type

	Set the type of the emulated BSD Operating system. Valid values are
FreeBSD, NetBSD and OpenBSD (default).

Debug options:

	-d item1,...

	Activate logging of the specified items (use ‘-d help’ for a list of
log items)

	-p pagesize

	Act as if the host page size was ‘pagesize’ bytes

	-singlestep

	Run the emulation in single step mode.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

Symbols

 	
 	
 --aio=AIO

 	qemu-nbd command line option

 	
 --backing-chain

 	qemu-img-common-opts command line option

 	
 --cache=CACHE

 	qemu-nbd command line option

 	
 --cache=none|auto|always

 	virtiofsd command line option

 	
 --detect-zeroes=DETECT_ZEROES

 	qemu-nbd command line option

 	
 --discard=DISCARD

 	qemu-nbd command line option

 	
 --fd=FDNUM

 	virtiofsd command line option

 	
 --force-share (-U)

 	qemu-img-common-opts command line option

 	
 --fork

 	qemu-nbd command line option

 	
 --image-opts

 	qemu-img-common-opts command line option

 	qemu-nbd command line option

 	
 --object OBJECTDEF

 	qemu-img-common-opts command line option

 	
 --object type,id=ID,...props...

 	qemu-nbd command line option

 	
 --pid-file=PATH

 	qemu-nbd command line option

 	
 --pid=PID, -p PID

 	qemu-trace-stap-run command line option

 	
 --salvage

 	qemu-img-convert command line option

 	
 --socket-path=PATH

 	virtiofsd command line option

 	
 --syslog

 	virtiofsd command line option

 	
 --target-image-opts

 	qemu-img-common-opts command line option

 	
 --target-is-zero

 	qemu-img-convert command line option

 	
 --thread-pool-size=NUM

 	virtiofsd command line option

 	
 --tls-authz=ID

 	qemu-nbd command line option

 	
 --tls-creds=ID

 	qemu-nbd command line option

 	
 --verbose, -v

 	qemu-trace-stap command line option

 	
 -a

 	qemu-img-snapshot command line option

 	
 -b, --bind=IFACE

 	qemu-nbd command line option

 	
 -B, --bitmap=NAME

 	qemu-nbd command line option

 	
 -b, --blacklist=LIST

 	qemu-ga command line option

 	
 -C

 	qemu-img-convert command line option

 	
 -c

 	qemu-img-common-opts command line option

 	qemu-img-snapshot command line option

 	
 -c, --connect=DEV

 	qemu-nbd command line option

 	
 -d

 	qemu-img-snapshot command line option

 	virtiofsd command line option

 	
 -d, --daemon

 	qemu-ga command line option

 	
 -D, --description=DESCRIPTION

 	qemu-nbd command line option

 	
 -d, --disconnect

 	qemu-nbd command line option

 	
 -D, --dump-conf

 	qemu-ga command line option

 	
 -e, --shared=NUM

 	qemu-nbd command line option

 	
 -F

 	qemu-img-compare command line option

 	
 -f

 	qemu-img-compare command line option

 	
 -f, --fd SOCKET_ID

 	virtfs-proxy-helper command line option

 	
 -f, --format=FMT

 	qemu-nbd command line option

 	
 -F, --fsfreeze-hook=PATH

 	qemu-ga command line option

 	
 	
 -f, --pidfile=PATH

 	qemu-ga command line option

 	
 -g, --gid GID

 	virtfs-proxy-helper command line option

 	
 -h

 	qemu-img-common-opts command line option

 	virtfs-proxy-helper command line option

 	
 -h, --help

 	qemu-ga command line option

 	qemu-img command line option

 	qemu-nbd command line option

 	virtiofsd command line option

 	
 -k, --socket=PATH

 	qemu-nbd command line option

 	
 -l

 	qemu-img-snapshot command line option

 	
 -L, --list

 	qemu-nbd command line option

 	
 -l, --load-snapshot=SNAPSHOT_PARAM

 	qemu-nbd command line option

 	
 -l, --logfile=PATH

 	qemu-ga command line option

 	
 -m

 	qemu-img-convert command line option

 	
 -m, --method=METHOD

 	qemu-ga command line option

 	
 -n

 	qemu-img-convert command line option

 	
 -n, --nocache

 	qemu-nbd command line option

 	
 -n, --nodaemon

 	virtfs-proxy-helper command line option

 	
 -o OPTION

 	virtiofsd command line option

 	
 -o, --offset=OFFSET

 	qemu-nbd command line option

 	
 -p

 	qemu-img-common-opts command line option

 	
 -p, --path PATH

 	virtfs-proxy-helper command line option

 	
 -p, --path=PATH

 	qemu-ga command line option

 	
 -p, --port=PORT

 	qemu-nbd command line option

 	
 -q

 	qemu-img-common-opts command line option

 	
 -r, --read-only

 	qemu-nbd command line option

 	
 -s

 	qemu-img-compare command line option

 	
 -S SIZE

 	qemu-img-common-opts command line option

 	
 -s, --snapshot

 	qemu-nbd command line option

 	
 -s, --socket SOCKET_FILE

 	virtfs-proxy-helper command line option

 	
 -t CACHE

 	qemu-img-common-opts command line option

 	
 -T SRC_CACHE

 	qemu-img-common-opts command line option

 	
 -t, --persistent

 	qemu-nbd command line option

 	
 -t, --statedir=PATH

 	qemu-ga command line option

 	
 -T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]

 	qemu-img command line option

 	qemu-nbd command line option

 	
 -u, --uid UID

 	virtfs-proxy-helper command line option

 	
 -v, --verbose

 	qemu-ga command line option

 	qemu-nbd command line option

 	
 -V, --version

 	qemu-ga command line option

 	qemu-img command line option

 	qemu-nbd command line option

 	virtiofsd command line option

 	
 -W

 	qemu-img-convert command line option

 	
 -x, --export-name=NAME

 	qemu-nbd command line option

 	
 [enable=]PATTERN

 	command line option, [1]

 	qemu-img command line option

 	qemu-nbd command line option

A

 	
 	address_space_cache_destroy (C function)

 	address_space_cache_invalidate (C function)

 	address_space_destroy (C function)

 	address_space_init (C function)

 	address_space_read (C function)

 	address_space_read_cached (C function)

 	address_space_remove_listeners (C function)

 	
 	address_space_rw (C function)

 	address_space_write (C function)

 	address_space_write_cached (C function)

 	address_space_write_rom (C function)

 	AddressSpace (C type)

 	
 amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE] -o OPTIONS FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

B

 	
 	
 backing_file

 	image-formats command line option, [1]

 	qcow command line option, [1]

 	qcow2 command line option, [1]

 	qed command line option, [1]

 	
 backing_fmt

 	qcow2 command line option, [1]

 	qed command line option, [1]

 	
 bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL] [-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 	
 block_size

 	VHDX command line option, [1]

 	
 block_state_zero

 	VHDX command line option, [1]

 	
 bochs

 	image-formats command line option, [1]

 	
 bs=BLOCK_SIZE

 	qemu-img-dd command line option

C

 	
 	change_bit (C function)

 	
 check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT] [-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 cipher-alg

 	luks command line option, [1]

 	
 cipher-mode

 	luks command line option, [1]

 	clear_bit (C function)

 	
 cloop

 	image-formats command line option, [1]

 	
 cluster_size

 	qcow2 command line option, [1]

 	qed command line option, [1]

 	
 command line option

 	[enable=]PATTERN, [1]

 	events=FILE, [1]

 	file=FILE, [1]

 	
 	
 commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b BASE] [-d] [-p] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 compat

 	qcow2 command line option, [1]

 	
 compat6

 	image-formats command line option, [1]

 	
 convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] [--salvage] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

 	qemu-img command line option

 	
 convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

 	qemu-img-commands command line option

 	
 count=BLOCKS

 	qemu-img-dd command line option

 	
 create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]

 	qemu-img command line option

 	qemu-img-commands command line option

D

 	
 	
 dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE] [count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 	deposit32 (C function)

 	deposit64 (C function)

 	
 dmg

 	image-formats command line option, [1]

E

 	
 	
 encrypt.cipher-alg

 	qcow2 command line option, [1]

 	
 encrypt.cipher-mode

 	qcow2 command line option, [1]

 	
 encrypt.format

 	qcow command line option, [1]

 	qcow2 command line option, [1]

 	
 encrypt.hash-alg

 	qcow2 command line option, [1]

 	
 encrypt.iter-time

 	qcow2 command line option, [1]

 	
 encrypt.ivgen-alg

 	qcow2 command line option, [1]

 	
 encrypt.ivgen-hash-alg

 	qcow2 command line option, [1]

 	
 	
 encrypt.key-secret

 	qcow command line option, [1]

 	qcow2 command line option, [1]

 	
 encryption

 	qcow command line option, [1]

 	qcow2 command line option, [1]

 	
 events=FILE

 	command line option, [1]

 	qemu-img command line option

 	qemu-nbd command line option

 	extract16 (C function)

 	extract32 (C function)

 	extract64 (C function)

 	extract8 (C function)

F

 	
 	
 file=FILE

 	command line option, [1]

 	qemu-img command line option

 	qemu-nbd command line option

 	
 	find_first_bit (C function)

 	find_first_zero_bit (C function)

 	find_last_bit (C function)

 	find_next_bit (C function)

 	find_next_zero_bit (C function)

H

 	
 	half_shuffle32 (C function)

 	half_shuffle64 (C function)

 	half_unshuffle32 (C function)

 	half_unshuffle64 (C function)

 	
 	
 hash-alg

 	luks command line option, [1]

 	
 hwversion

 	image-formats command line option, [1]

I

 	
 	
 if=INPUT

 	qemu-img-dd command line option

 	
 image-formats command line option

 	VHDX, [1]

 	backing_file, [1]

 	bochs, [1]

 	cloop, [1]

 	compat6, [1]

 	dmg, [1]

 	hwversion, [1]

 	luks, [1]

 	parallels, [1]

 	qcow, [1]

 	qcow2, [1]

 	qed, [1]

 	raw, [1]

 	subformat, [1]

 	vdi, [1]

 	vmdk, [1]

 	vpc, [1]

 	
 	
 info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [--backing-chain] [-U] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 iter-time

 	luks command line option, [1]

 	
 ivgen-alg

 	luks command line option, [1]

 	
 ivgen-hash-alg

 	luks command line option, [1]

K

 	
 	
 key-secret

 	luks command line option, [1]

L

 	
 	
 lazy_refcounts

 	qcow2 command line option, [1]

 	
 list BINARY PATTERN...

 	qemu-trace-stap command line option

 	
 log_size

 	VHDX command line option, [1]

 	
 luks

 	image-formats command line option, [1]

 	
 	
 luks command line option

 	cipher-alg, [1]

 	cipher-mode, [1]

 	hash-alg, [1]

 	iter-time, [1]

 	ivgen-alg, [1]

 	ivgen-hash-alg, [1]

 	key-secret, [1]

M

 	
 	
 map [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [-U] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N | [--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM] FILENAME]

 	qemu-img command line option

 	qemu-img-commands command line option

 	memory_global_after_dirty_log_sync (C function)

 	memory_global_dirty_log_start (C function)

 	memory_global_dirty_log_stop (C function)

 	memory_global_dirty_log_sync (C function)

 	memory_listener_register (C function)

 	memory_listener_unregister (C function)

 	memory_region_add_coalescing (C function)

 	memory_region_add_eventfd (C function)

 	memory_region_add_subregion (C function)

 	memory_region_add_subregion_overlap (C function)

 	memory_region_clear_coalescing (C function)

 	memory_region_clear_dirty_bitmap (C function)

 	memory_region_clear_flush_coalesced (C function)

 	memory_region_clear_global_locking (C function)

 	memory_region_del_eventfd (C function)

 	memory_region_del_subregion (C function)

 	memory_region_dispatch_read (C function)

 	memory_region_dispatch_write (C function)

 	memory_region_do_writeback (C function)

 	memory_region_find (C function)

 	memory_region_flush_rom_device (C function)

 	memory_region_from_host (C function)

 	memory_region_get_dirty_log_mask (C function)

 	memory_region_get_fd (C function)

 	memory_region_get_iommu (C function)

 	memory_region_get_iommu_class_nocheck (C function)

 	memory_region_get_ram_addr (C function)

 	memory_region_get_ram_ptr (C function)

 	memory_region_init (C function)

 	memory_region_init_alias (C function)

 	memory_region_init_io (C function)

 	memory_region_init_iommu (C function)

 	memory_region_init_ram (C function)

 	memory_region_init_ram_device_ptr (C function)

 	memory_region_init_ram_from_fd (C function)

 	memory_region_init_ram_from_file (C function)

 	memory_region_init_ram_nomigrate (C function)

 	
 	memory_region_init_ram_ptr (C function)

 	memory_region_init_ram_shared_nomigrate (C function)

 	memory_region_init_resizeable_ram (C function)

 	memory_region_init_rom (C function)

 	memory_region_init_rom_device (C function)

 	memory_region_init_rom_device_nomigrate (C function)

 	memory_region_init_rom_nomigrate (C function)

 	memory_region_iommu_attrs_to_index (C function)

 	memory_region_iommu_get_attr (C function)

 	memory_region_iommu_get_min_page_size (C function)

 	memory_region_iommu_num_indexes (C function)

 	memory_region_iommu_replay (C function)

 	memory_region_is_logging (C function)

 	memory_region_is_mapped (C function)

 	memory_region_is_nonvolatile (C function)

 	memory_region_is_ram (C function)

 	memory_region_is_ram_device (C function)

 	memory_region_is_rom (C function)

 	memory_region_is_romd (C function)

 	memory_region_name (C function)

 	memory_region_notify_iommu (C function)

 	memory_region_notify_one (C function)

 	memory_region_owner (C function)

 	memory_region_present (C function)

 	memory_region_ref (C function)

 	memory_region_register_iommu_notifier (C function)

 	memory_region_reset_dirty (C function)

 	memory_region_rom_device_set_romd (C function)

 	memory_region_set_coalescing (C function)

 	memory_region_set_dirty (C function)

 	memory_region_set_flush_coalesced (C function)

 	memory_region_set_log (C function)

 	memory_region_set_nonvolatile (C function)

 	memory_region_set_readonly (C function)

 	memory_region_size (C function)

 	memory_region_snapshot_and_clear_dirty (C function)

 	memory_region_snapshot_get_dirty (C function)

 	memory_region_transaction_begin (C function)

 	memory_region_transaction_commit (C function)

 	memory_region_unref (C function)

 	memory_region_unregister_iommu_notifier (C function)

 	MemoryListener (C type)

 	MemoryRegionSection (C type)

N

 	
 	
 nocow

 	qcow2 command line option, [1]

O

 	
 	
 of=OUTPUT

 	qemu-img-dd command line option

P

 	
 	
 parallels

 	image-formats command line option, [1]

 	
 	
 preallocation

 	qcow2 command line option, [1]

 	raw command line option, [1]

Q

 	
 	
 qcow

 	image-formats command line option, [1]

 	
 qcow command line option

 	backing_file, [1]

 	encrypt.format, [1]

 	encrypt.key-secret, [1]

 	encryption, [1]

 	
 qcow2

 	image-formats command line option, [1]

 	
 qcow2 command line option

 	backing_file, [1]

 	backing_fmt, [1]

 	cluster_size, [1]

 	compat, [1]

 	encrypt.cipher-alg, [1]

 	encrypt.cipher-mode, [1]

 	encrypt.format, [1]

 	encrypt.hash-alg, [1]

 	encrypt.iter-time, [1]

 	encrypt.ivgen-alg, [1]

 	encrypt.ivgen-hash-alg, [1]

 	encrypt.key-secret, [1]

 	encryption, [1]

 	lazy_refcounts, [1]

 	nocow, [1]

 	preallocation, [1]

 	
 qed

 	image-formats command line option, [1]

 	
 qed command line option

 	backing_file, [1]

 	backing_fmt, [1]

 	cluster_size, [1]

 	table_size, [1]

 	
 qemu-ga command line option

 	-D, --dump-conf

 	-F, --fsfreeze-hook=PATH

 	-V, --version

 	-b, --blacklist=LIST

 	-d, --daemon

 	-f, --pidfile=PATH

 	-h, --help

 	-l, --logfile=PATH

 	-m, --method=METHOD

 	-p, --path=PATH

 	-t, --statedir=PATH

 	-v, --verbose

 	
 qemu-img command line option

 	-T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]

 	-V, --version

 	-h, --help

 	[enable=]PATTERN

 	amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE] -o OPTIONS FILENAME

 	bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL] [-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME

 	check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT] [-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME

 	commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b BASE] [-d] [-p] FILENAME

 	compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2

 	convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] [--salvage] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

 	create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]

 	dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE] [count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT

 	events=FILE

 	file=FILE

 	info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [--backing-chain] [-U] FILENAME

 	map [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [-U] FILENAME

 	measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N | [--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM] FILENAME]

 	rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT] FILENAME

 	resize [--object OBJECTDEF] [--image-opts] [-f FMT] [--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE

 	snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME

 	
 qemu-img-commands command line option

 	amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE] -o OPTIONS FILENAME

 	bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL] [-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME

 	check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT] [-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME

 	commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b BASE] [-d] [-p] FILENAME

 	compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2

 	convert [--object OBJECTDEF] [--image-opts] [--target-image-opts] [--target-is-zero] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-m NUM_COROUTINES] [-W] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME

 	create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]

 	dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE] [count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT

 	info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [--backing-chain] [-U] FILENAME

 	map [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT] [-U] FILENAME

 	measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N | [--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM] FILENAME]

 	rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT] FILENAME

 	resize [--object OBJECTDEF] [--image-opts] [-f FMT] [--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE

 	snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME

 	
 	
 qemu-img-common-opts command line option

 	--backing-chain

 	--force-share (-U)

 	--image-opts

 	--object OBJECTDEF

 	--target-image-opts

 	-S SIZE

 	-T SRC_CACHE

 	-c

 	-h

 	-p

 	-q

 	-t CACHE

 	
 qemu-img-compare command line option

 	-F

 	-f

 	-s

 	
 qemu-img-convert command line option

 	--salvage

 	--target-is-zero

 	-C

 	-W

 	-m

 	-n

 	
 qemu-img-dd command line option

 	bs=BLOCK_SIZE

 	count=BLOCKS

 	if=INPUT

 	of=OUTPUT

 	skip=BLOCKS

 	
 qemu-img-snapshot command line option

 	-a

 	-c

 	-d

 	-l

 	snapshot

 	
 qemu-nbd command line option

 	--aio=AIO

 	--cache=CACHE

 	--detect-zeroes=DETECT_ZEROES

 	--discard=DISCARD

 	--fork

 	--image-opts

 	--object type,id=ID,...props...

 	--pid-file=PATH

 	--tls-authz=ID

 	--tls-creds=ID

 	-B, --bitmap=NAME

 	-D, --description=DESCRIPTION

 	-L, --list

 	-T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]

 	-V, --version

 	-b, --bind=IFACE

 	-c, --connect=DEV

 	-d, --disconnect

 	-e, --shared=NUM

 	-f, --format=FMT

 	-h, --help

 	-k, --socket=PATH

 	-l, --load-snapshot=SNAPSHOT_PARAM

 	-n, --nocache

 	-o, --offset=OFFSET

 	-p, --port=PORT

 	-r, --read-only

 	-s, --snapshot

 	-t, --persistent

 	-v, --verbose

 	-x, --export-name=NAME

 	[enable=]PATTERN

 	events=FILE

 	file=FILE

 	
 qemu-trace-stap command line option

 	--verbose, -v

 	list BINARY PATTERN...

 	run OPTIONS BINARY PATTERN...

 	
 qemu-trace-stap-run command line option

 	--pid=PID, -p PID

R

 	
 	
 raw

 	image-formats command line option, [1]

 	
 raw command line option

 	preallocation, [1]

 	
 rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 resize [--object OBJECTDEF] [--image-opts] [-f FMT] [--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 	rol16 (C function)

 	rol32 (C function)

 	rol64 (C function)

 	rol8 (C function)

 	ror16 (C function)

 	ror32 (C function)

 	ror64 (C function)

 	ror8 (C function)

 	
 run OPTIONS BINARY PATTERN...

 	qemu-trace-stap command line option

S

 	
 	set_bit (C function)

 	set_bit_atomic (C function)

 	sextract32 (C function)

 	sextract64 (C function)

 	
 skip=BLOCKS

 	qemu-img-dd command line option

 	
 snapshot

 	qemu-img-snapshot command line option

 	
 	
 snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME

 	qemu-img command line option

 	qemu-img-commands command line option

 	
 static

 	vdi command line option, [1]

 	
 subformat

 	VHDX command line option, [1]

 	image-formats command line option, [1]

 	vpc command line option, [1]

T

 	
 	
 table_size

 	qed command line option, [1]

 	test_and_change_bit (C function)

 	
 	test_and_clear_bit (C function)

 	test_and_set_bit (C function)

 	test_bit (C function)

V

 	
 	
 vdi

 	image-formats command line option, [1]

 	
 vdi command line option

 	static, [1]

 	
 VHDX

 	image-formats command line option, [1]

 	
 VHDX command line option

 	block_size, [1]

 	block_state_zero, [1]

 	log_size, [1]

 	subformat, [1]

 	
 virtfs-proxy-helper command line option

 	-f, --fd SOCKET_ID

 	-g, --gid GID

 	-h

 	-n, --nodaemon

 	-p, --path PATH

 	-s, --socket SOCKET_FILE

 	-u, --uid UID

 	
 	
 virtiofsd command line option

 	--cache=none|auto|always

 	--fd=FDNUM

 	--socket-path=PATH

 	--syslog

 	--thread-pool-size=NUM

 	-V, --version

 	-d

 	-h, --help

 	-o OPTION

 	
 vmdk

 	image-formats command line option, [1]

 	
 vpc

 	image-formats command line option, [1]

 	
 vpc command line option

 	subformat, [1]

ARM CPU Features

Examples of probing and using ARM CPU features

Introduction

CPU features are optional features that a CPU of supporting type may
choose to implement or not. In QEMU, optional CPU features have
corresponding boolean CPU proprieties that, when enabled, indicate
that the feature is implemented, and, conversely, when disabled,
indicate that it is not implemented. An example of an ARM CPU feature
is the Performance Monitoring Unit (PMU). CPU types such as the
Cortex-A15 and the Cortex-A57, which respectively implement ARM
architecture reference manuals ARMv7-A and ARMv8-A, may both optionally
implement PMUs. For example, if a user wants to use a Cortex-A15 without
a PMU, then the -cpu parameter should contain pmu=off on the QEMU
command line, i.e. -cpu cortex-a15,pmu=off.

As not all CPU types support all optional CPU features, then whether or
not a CPU property exists depends on the CPU type. For example, CPUs
that implement the ARMv8-A architecture reference manual may optionally
support the AArch32 CPU feature, which may be enabled by disabling the
aarch64 CPU property. A CPU type such as the Cortex-A15, which does
not implement ARMv8-A, will not have the aarch64 CPU property.

QEMU’s support may be limited for some CPU features, only partially
supporting the feature or only supporting the feature under certain
configurations. For example, the aarch64 CPU feature, which, when
disabled, enables the optional AArch32 CPU feature, is only supported
when using the KVM accelerator and when running on a host CPU type that
supports the feature. While aarch64 currently only works with KVM,
it could work with TCG. CPU features that are specific to KVM are
prefixed with “kvm-” and are described in “KVM VCPU Features”.

CPU Feature Probing

Determining which CPU features are available and functional for a given
CPU type is possible with the query-cpu-model-expansion QMP command.
Below are some examples where scripts/qmp/qmp-shell (see the top comment
block in the script for usage) is used to issue the QMP commands.

	Determine which CPU features are available for the max CPU type
(Note, we started QEMU with qemu-system-aarch64, so max is
implementing the ARMv8-A reference manual in this case):

(QEMU) query-cpu-model-expansion type=full model={"name":"max"}
{ "return": {
 "model": { "name": "max", "props": {
 "sve1664": true, "pmu": true, "sve1792": true, "sve1920": true,
 "sve128": true, "aarch64": true, "sve1024": true, "sve": true,
 "sve640": true, "sve768": true, "sve1408": true, "sve256": true,
 "sve1152": true, "sve512": true, "sve384": true, "sve1536": true,
 "sve896": true, "sve1280": true, "sve2048": true
}}}}

We see that the max CPU type has the pmu, aarch64, sve, and many
sve<N> CPU features. We also see that all the CPU features are
enabled, as they are all true. (The sve<N> CPU features are all
optional SVE vector lengths (see “SVE CPU Properties”). While with TCG
all SVE vector lengths can be supported, when KVM is in use it’s more
likely that only a few lengths will be supported, if SVE is supported at
all.)

	Let’s try to disable the PMU:

(QEMU) query-cpu-model-expansion type=full model={"name":"max","props":{"pmu":false}}
{ "return": {
 "model": { "name": "max", "props": {
 "sve1664": true, "pmu": false, "sve1792": true, "sve1920": true,
 "sve128": true, "aarch64": true, "sve1024": true, "sve": true,
 "sve640": true, "sve768": true, "sve1408": true, "sve256": true,
 "sve1152": true, "sve512": true, "sve384": true, "sve1536": true,
 "sve896": true, "sve1280": true, "sve2048": true
}}}}

We see it worked, as pmu is now false.

	Let’s try to disable aarch64, which enables the AArch32 CPU feature:

(QEMU) query-cpu-model-expansion type=full model={"name":"max","props":{"aarch64":false}}
{"error": {
 "class": "GenericError", "desc":
 "'aarch64' feature cannot be disabled unless KVM is enabled and 32-bit EL1 is supported"
}}

It looks like this feature is limited to a configuration we do not
currently have.

	Let’s disable sve and see what happens to all the optional SVE
vector lengths:

(QEMU) query-cpu-model-expansion type=full model={"name":"max","props":{"sve":false}}
{ "return": {
 "model": { "name": "max", "props": {
 "sve1664": false, "pmu": true, "sve1792": false, "sve1920": false,
 "sve128": false, "aarch64": true, "sve1024": false, "sve": false,
 "sve640": false, "sve768": false, "sve1408": false, "sve256": false,
 "sve1152": false, "sve512": false, "sve384": false, "sve1536": false,
 "sve896": false, "sve1280": false, "sve2048": false
}}}}

As expected they are now all false.

	Let’s try probing CPU features for the Cortex-A15 CPU type:

(QEMU) query-cpu-model-expansion type=full model={"name":"cortex-a15"}
{"return": {"model": {"name": "cortex-a15", "props": {"pmu": true}}}}

Only the pmu CPU feature is available.

A note about CPU feature dependencies

It’s possible for features to have dependencies on other features. I.e.
it may be possible to change one feature at a time without error, but
when attempting to change all features at once an error could occur
depending on the order they are processed. It’s also possible changing
all at once doesn’t generate an error, because a feature’s dependencies
are satisfied with other features, but the same feature cannot be changed
independently without error. For these reasons callers should always
attempt to make their desired changes all at once in order to ensure the
collection is valid.

A note about CPU models and KVM

Named CPU models generally do not work with KVM. There are a few cases
that do work, e.g. using the named CPU model cortex-a57 with KVM on a
seattle host, but mostly if KVM is enabled the host CPU type must be
used. This means the guest is provided all the same CPU features as the
host CPU type has. And, for this reason, the host CPU type should
enable all CPU features that the host has by default. Indeed it’s even
a bit strange to allow disabling CPU features that the host has when using
the host CPU type, but in the absence of CPU models it’s the best we can
do if we want to launch guests without all the host’s CPU features enabled.

Enabling KVM also affects the query-cpu-model-expansion QMP command. The
affect is not only limited to specific features, as pointed out in example
(3) of “CPU Feature Probing”, but also to which CPU types may be expanded.
When KVM is enabled, only the max, host, and current CPU type may be
expanded. This restriction is necessary as it’s not possible to know all
CPU types that may work with KVM, but it does impose a small risk of users
experiencing unexpected errors. For example on a seattle, as mentioned
above, the cortex-a57 CPU type is also valid when KVM is enabled.
Therefore a user could use the host CPU type for the current type, but
then attempt to query cortex-a57, however that query will fail with our
restrictions. This shouldn’t be an issue though as management layers and
users have been preferring the host CPU type for use with KVM for quite
some time. Additionally, if the KVM-enabled QEMU instance running on a
seattle host is using the cortex-a57 CPU type, then querying cortex-a57
will work.

Using CPU Features

After determining which CPU features are available and supported for a
given CPU type, then they may be selectively enabled or disabled on the
QEMU command line with that CPU type:

$ qemu-system-aarch64 -M virt -cpu max,pmu=off,sve=on,sve128=on,sve256=on

The example above disables the PMU and enables the first two SVE vector
lengths for the max CPU type. Note, the sve=on isn’t actually
necessary, because, as we observed above with our probe of the max CPU
type, sve is already on by default. Also, based on our probe of
defaults, it would seem we need to disable many SVE vector lengths, rather
than only enabling the two we want. This isn’t the case, because, as
disabling many SVE vector lengths would be quite verbose, the sve<N> CPU
properties have special semantics (see “SVE CPU Property Parsing
Semantics”).

KVM VCPU Features

KVM VCPU features are CPU features that are specific to KVM, such as
paravirt features or features that enable CPU virtualization extensions.
The features’ CPU properties are only available when KVM is enabled and
are named with the prefix “kvm-“. KVM VCPU features may be probed,
enabled, and disabled in the same way as other CPU features. Below is
the list of KVM VCPU features and their descriptions.

	kvm-no-adjvtime By default kvm-no-adjvtime is disabled. This

	means that by default the virtual time
adjustment is enabled (vtime is not not
adjusted).

When virtual time adjustment is enabled each
time the VM transitions back to running state
the VCPU’s virtual counter is updated to ensure
stopped time is not counted. This avoids time
jumps surprising guest OSes and applications,
as long as they use the virtual counter for
timekeeping. However it has the side effect of
the virtual and physical counters diverging.
All timekeeping based on the virtual counter
will appear to lag behind any timekeeping that
does not subtract VM stopped time. The guest
may resynchronize its virtual counter with
other time sources as needed.

Enable kvm-no-adjvtime to disable virtual time
adjustment, also restoring the legacy (pre-5.0)
behavior.

SVE CPU Properties

There are two types of SVE CPU properties: sve and sve<N>. The first
is used to enable or disable the entire SVE feature, just as the pmu
CPU property completely enables or disables the PMU. The second type
is used to enable or disable specific vector lengths, where N is the
number of bits of the length. The sve<N> CPU properties have special
dependencies and constraints, see “SVE CPU Property Dependencies and
Constraints” below. Additionally, as we want all supported vector lengths
to be enabled by default, then, in order to avoid overly verbose command
lines (command lines full of sve<N>=off, for all N not wanted), we
provide the parsing semantics listed in “SVE CPU Property Parsing
Semantics”.

SVE CPU Property Dependencies and Constraints

	At least one vector length must be enabled when sve is enabled.

	If a vector length N is enabled, then, when KVM is enabled, all
smaller, host supported vector lengths must also be enabled. If
KVM is not enabled, then only all the smaller, power-of-two vector
lengths must be enabled. E.g. with KVM if the host supports all
vector lengths up to 512-bits (128, 256, 384, 512), then if sve512
is enabled, the 128-bit vector length, 256-bit vector length, and
384-bit vector length must also be enabled. Without KVM, the 384-bit
vector length would not be required.

	If KVM is enabled then only vector lengths that the host CPU type
support may be enabled. If SVE is not supported by the host, then
no sve* properties may be enabled.

SVE CPU Property Parsing Semantics

	If SVE is disabled (sve=off), then which SVE vector lengths
are enabled or disabled is irrelevant to the guest, as the entire
SVE feature is disabled and that disables all vector lengths for
the guest. However QEMU will still track any sve<N> CPU
properties provided by the user. If later an sve=on is provided,
then the guest will get only the enabled lengths. If no sve=on
is provided and there are explicitly enabled vector lengths, then
an error is generated.

	If SVE is enabled (sve=on), but no sve<N> CPU properties are
provided, then all supported vector lengths are enabled, which when
KVM is not in use means including the non-power-of-two lengths, and,
when KVM is in use, it means all vector lengths supported by the host
processor.

	If SVE is enabled, then an error is generated when attempting to
disable the last enabled vector length (see constraint (1) of “SVE
CPU Property Dependencies and Constraints”).

	If one or more vector lengths have been explicitly enabled and at
at least one of the dependency lengths of the maximum enabled length
has been explicitly disabled, then an error is generated (see
constraint (2) of “SVE CPU Property Dependencies and Constraints”).

	When KVM is enabled, if the host does not support SVE, then an error
is generated when attempting to enable any sve* properties (see
constraint (3) of “SVE CPU Property Dependencies and Constraints”).

	When KVM is enabled, if the host does support SVE, then an error is
generated when attempting to enable any vector lengths not supported
by the host (see constraint (3) of “SVE CPU Property Dependencies and
Constraints”).

	If one or more sve<N> CPU properties are set off, but no sve<N>,
CPU properties are set on, then the specified vector lengths are
disabled but the default for any unspecified lengths remains enabled.
When KVM is not enabled, disabling a power-of-two vector length also
disables all vector lengths larger than the power-of-two length.
When KVM is enabled, then disabling any supported vector length also
disables all larger vector lengths (see constraint (2) of “SVE CPU
Property Dependencies and Constraints”).

	If one or more sve<N> CPU properties are set to on, then they
are enabled and all unspecified lengths default to disabled, except
for the required lengths per constraint (2) of “SVE CPU Property
Dependencies and Constraints”, which will even be auto-enabled if
they were not explicitly enabled.

	If SVE was disabled (sve=off), allowing all vector lengths to be
explicitly disabled (i.e. avoiding the error specified in (3) of
“SVE CPU Property Parsing Semantics”), then if later an sve=on is
provided an error will be generated. To avoid this error, one must
enable at least one vector length prior to enabling SVE.

SVE CPU Property Examples

	Disable SVE:

$ qemu-system-aarch64 -M virt -cpu max,sve=off

	Implicitly enable all vector lengths for the max CPU type:

$ qemu-system-aarch64 -M virt -cpu max

	When KVM is enabled, implicitly enable all host CPU supported vector
lengths with the host CPU type:

$ qemu-system-aarch64 -M virt,accel=kvm -cpu host

	Only enable the 128-bit vector length:

$ qemu-system-aarch64 -M virt -cpu max,sve128=on

	Disable the 512-bit vector length and all larger vector lengths,
since 512 is a power-of-two. This results in all the smaller,
uninitialized lengths (128, 256, and 384) defaulting to enabled:

$ qemu-system-aarch64 -M virt -cpu max,sve512=off

	Enable the 128-bit, 256-bit, and 512-bit vector lengths:

$ qemu-system-aarch64 -M virt -cpu max,sve128=on,sve256=on,sve512=on

	The same as (6), but since the 128-bit and 256-bit vector
lengths are required for the 512-bit vector length to be enabled,
then allow them to be auto-enabled:

$ qemu-system-aarch64 -M virt -cpu max,sve512=on

	Do the same as (7), but by first disabling SVE and then re-enabling it:

$ qemu-system-aarch64 -M virt -cpu max,sve=off,sve512=on,sve=on

	Force errors regarding the last vector length:

$ qemu-system-aarch64 -M virt -cpu max,sve128=off
$ qemu-system-aarch64 -M virt -cpu max,sve=off,sve128=off,sve=on

SVE CPU Property Recommendations

The examples in “SVE CPU Property Examples” exhibit many ways to select
vector lengths which developers may find useful in order to avoid overly
verbose command lines. However, the recommended way to select vector
lengths is to explicitly enable each desired length. Therefore only
example’s (1), (4), and (6) exhibit recommended uses of the properties.

Virtual CPU hotplug

A complete example of vCPU hotplug (and hot-unplug) using QMP
device_add and device_del.

vCPU hotplug

	Launch QEMU as follows (note that the “maxcpus” is mandatory to
allow vCPU hotplug):

$ qemu-system-x86_64 -display none -no-user-config -m 2048 \
 -nodefaults -monitor stdio -machine pc,accel=kvm,usb=off \
 -smp 1,maxcpus=2 -cpu IvyBridge-IBRS \
 -qmp unix:/tmp/qmp-sock,server,nowait

	Run ‘qmp-shell’ (located in the source tree, under: “scripts/qmp/)
to connect to the just-launched QEMU:

$> ./qmp-shell -p -v /tmp/qmp-sock
[...]
(QEMU)

	Find out which CPU types could be plugged, and into which sockets:

(QEMU) query-hotpluggable-cpus
{
 "execute": "query-hotpluggable-cpus",
 "arguments": {}
}
{
 "return": [
 {
 "type": "IvyBridge-IBRS-x86_64-cpu",
 "vcpus-count": 1,
 "props": {
 "socket-id": 1,
 "core-id": 0,
 "thread-id": 0
 }
 },
 {
 "qom-path": "/machine/unattached/device[0]",
 "type": "IvyBridge-IBRS-x86_64-cpu",
 "vcpus-count": 1,
 "props": {
 "socket-id": 0,
 "core-id": 0,
 "thread-id": 0
 }
 }
]
}
(QEMU)

	The query-hotpluggable-cpus command returns an object for CPUs
that are present (containing a “qom-path” member) or which may be
hot-plugged (no “qom-path” member). From its output in step (3), we
can see that IvyBridge-IBRS-x86_64-cpu is present in socket 0,
while hot-plugging a CPU into socket 1 requires passing the listed
properties to QMP device_add:

(QEMU) device_add id=cpu-2 driver=IvyBridge-IBRS-x86_64-cpu socket-id=1 core-id=0 thread-id=0
{
 "execute": "device_add",
 "arguments": {
 "socket-id": 1,
 "driver": "IvyBridge-IBRS-x86_64-cpu",
 "id": "cpu-2",
 "core-id": 0,
 "thread-id": 0
 }
}
{
 "return": {}
}
(QEMU)

	Optionally, run QMP query-cpus-fast for some details about the
vCPUs:

(QEMU) query-cpus-fast
{
 "execute": "query-cpus-fast",
 "arguments": {}
}
{
 "return": [
 {
 "qom-path": "/machine/unattached/device[0]",
 "target": "x86_64",
 "thread-id": 11534,
 "cpu-index": 0,
 "props": {
 "socket-id": 0,
 "core-id": 0,
 "thread-id": 0
 },
 "arch": "x86"
 },
 {
 "qom-path": "/machine/peripheral/cpu-2",
 "target": "x86_64",
 "thread-id": 12106,
 "cpu-index": 1,
 "props": {
 "socket-id": 1,
 "core-id": 0,
 "thread-id": 0
 },
 "arch": "x86"
 }
]
}
(QEMU)

vCPU hot-unplug

From the ‘qmp-shell’, invoke the QMP device_del command:

(QEMU) device_del id=cpu-2
{
 "execute": "device_del",
 "arguments": {
 "id": "cpu-2"
 }
}
{
 "return": {}
}
(QEMU)

Note

vCPU hot-unplug requires guest cooperation; so the device_del
command above does not guarantee vCPU removal – it’s a “request to
unplug”. At this point, the guest will get a System Control
Interrupt (SCI) and calls the ACPI handler for the affected vCPU
device. Then the guest kernel will bring the vCPU offline and tell
QEMU to unplug it.

microvm Machine Type

microvm is a machine type inspired by Firecracker and
constructed after its machine model.

It’s a minimalist machine type without PCI nor ACPI support,
designed for short-lived guests. microvm also establishes a baseline
for benchmarking and optimizing both QEMU and guest operating systems,
since it is optimized for both boot time and footprint.

Supported devices

The microvm machine type supports the following devices:

	ISA bus

	i8259 PIC (optional)

	i8254 PIT (optional)

	MC146818 RTC (optional)

	One ISA serial port (optional)

	LAPIC

	IOAPIC (with kernel-irqchip=split by default)

	kvmclock (if using KVM)

	fw_cfg

	Up to eight virtio-mmio devices (configured by the user)

Limitations

Currently, microvm does not support the following features:

	PCI-only devices.

	Hotplug of any kind.

	Live migration across QEMU versions.

Using the microvm machine type

Machine-specific options

It supports the following machine-specific options:

	microvm.x-option-roms=bool (Set off to disable loading option ROMs)

	microvm.pit=OnOffAuto (Enable i8254 PIT)

	microvm.isa-serial=bool (Set off to disable the instantiation an ISA serial port)

	microvm.pic=OnOffAuto (Enable i8259 PIC)

	microvm.rtc=OnOffAuto (Enable MC146818 RTC)

	microvm.auto-kernel-cmdline=bool (Set off to disable adding virtio-mmio devices to the kernel cmdline)

Boot options

By default, microvm uses qboot as its BIOS, to obtain better boot
times, but it’s also compatible with SeaBIOS.

As no current FW is able to boot from a block device using
virtio-mmio as its transport, a microvm-based VM needs to be run
using a host-side kernel and, optionally, an initrd image.

Running a microvm-based VM

By default, microvm aims for maximum compatibility, enabling both
legacy and non-legacy devices. In this example, a VM is created
without passing any additional machine-specific option, using the
legacy ISA serial device as console:

$ qemu-system-x86_64 -M microvm \
 -enable-kvm -cpu host -m 512m -smp 2 \
 -kernel vmlinux -append "earlyprintk=ttyS0 console=ttyS0 root=/dev/vda" \
 -nodefaults -no-user-config -nographic \
 -serial stdio \
 -drive id=test,file=test.img,format=raw,if=none \
 -device virtio-blk-device,drive=test \
 -netdev tap,id=tap0,script=no,downscript=no \
 -device virtio-net-device,netdev=tap0

While the example above works, you might be interested in reducing the
footprint further by disabling some legacy devices. If you’re using
KVM, you can disable the RTC, making the Guest rely on
kvmclock exclusively. Additionally, if your host’s CPUs have the
TSC_DEADLINE feature, you can also disable both the i8259 PIC and
the i8254 PIT (make sure you’re also emulating a CPU with such feature
in the guest).

This is an example of a VM with all optional legacy features
disabled:

$ qemu-system-x86_64 \
 -M microvm,x-option-roms=off,pit=off,pic=off,isa-serial=off,rtc=off \
 -enable-kvm -cpu host -m 512m -smp 2 \
 -kernel vmlinux -append "console=hvc0 root=/dev/vda" \
 -nodefaults -no-user-config -nographic \
 -chardev stdio,id=virtiocon0 \
 -device virtio-serial-device \
 -device virtconsole,chardev=virtiocon0 \
 -drive id=test,file=test.img,format=raw,if=none \
 -device virtio-blk-device,drive=test \
 -netdev tap,id=tap0,script=no,downscript=no \
 -device virtio-net-device,netdev=tap0

Triggering a guest-initiated shut down

As the microvm machine type includes just a small set of system
devices, some x86 mechanisms for rebooting or shutting down the
system, like sending a key sequence to the keyboard or writing to an
ACPI register, doesn’t have any effect in the VM.

The recommended way to trigger a guest-initiated shut down is by
generating a triple-fault, which will cause the VM to initiate a
reboot. Additionally, if the -no-reboot argument is present in the
command line, QEMU will detect this event and terminate its own
execution gracefully.

Linux does support this mechanism, but by default will only be used
after other options have been tried and failed, causing the reboot to
be delayed by a small number of seconds. It’s possible to instruct it
to try the triple-fault mechanism first, by adding reboot=t to the
kernel’s command line.

Persistent reservation managers

SCSI persistent Reservations allow restricting access to block devices
to specific initiators in a shared storage setup. When implementing
clustering of virtual machines, it is a common requirement for virtual
machines to send persistent reservation SCSI commands. However,
the operating system restricts sending these commands to unprivileged
programs because incorrect usage can disrupt regular operation of the
storage fabric.

For this reason, QEMU’s SCSI passthrough devices, scsi-block
and scsi-generic (both are only available on Linux) can delegate
implementation of persistent reservations to a separate object,
the “persistent reservation manager”. Only PERSISTENT RESERVE OUT and
PERSISTENT RESERVE IN commands are passed to the persistent reservation
manager object; other commands are processed by QEMU as usual.

Defining a persistent reservation manager

A persistent reservation manager is an instance of a subclass of the
“pr-manager” QOM class.

Right now only one subclass is defined, pr-manager-helper, which
forwards the commands to an external privileged helper program
over Unix sockets. The helper program only allows sending persistent
reservation commands to devices for which QEMU has a file descriptor,
so that QEMU will not be able to effect persistent reservations
unless it has access to both the socket and the device.

pr-manager-helper has a single string property, path, which
accepts the path to the helper program’s Unix socket. For example,
the following command line defines a pr-manager-helper object and
attaches it to a SCSI passthrough device:

$ qemu-system-x86_64
 -device virtio-scsi \
 -object pr-manager-helper,id=helper0,path=/var/run/qemu-pr-helper.sock
 -drive if=none,id=hd,driver=raw,file.filename=/dev/sdb,file.pr-manager=helper0
 -device scsi-block,drive=hd

Alternatively, using -blockdev:

$ qemu-system-x86_64
 -device virtio-scsi \
 -object pr-manager-helper,id=helper0,path=/var/run/qemu-pr-helper.sock
 -blockdev node-name=hd,driver=raw,file.driver=host_device,file.filename=/dev/sdb,file.pr-manager=helper0
 -device scsi-block,drive=hd

Invoking qemu-pr-helper

QEMU provides an implementation of the persistent reservation helper,
called qemu-pr-helper. The helper should be started as a
system service and supports the following option:

	-d, --daemon

	run in the background

	-q, --quiet

	decrease verbosity

	-v, --verbose

	increase verbosity

	-f, --pidfile=path

	PID file when running as a daemon

	-k, --socket=path

	path to the socket

	-T, --trace=trace-opts

	tracing options

By default, the socket and PID file are placed in the runtime state
directory, for example /var/run/qemu-pr-helper.sock and
/var/run/qemu-pr-helper.pid. The PID file is not created
unless -d is passed too.

qemu-pr-helper can also use the systemd socket activation
protocol. In this case, the systemd socket unit should specify a
Unix stream socket, like this:

[Socket]
ListenStream=/var/run/qemu-pr-helper.sock

After connecting to the socket, qemu-pr-helper` can optionally drop
root privileges, except for those capabilities that are needed for
its operation. To do this, add the following options:

	-u, --user=user

	user to drop privileges to

	-g, --group=group

	group to drop privileges to

Multipath devices and persistent reservations

Proper support of persistent reservation for multipath devices requires
communication with the multipath daemon, so that the reservation is
registered and applied when a path is newly discovered or becomes online
again. qemu-pr-helper can do this if the libmpathpersist
library was available on the system at build time.

As of August 2017, a reservation key must be specified in multipath.conf
for multipathd to check for persistent reservation for newly
discovered paths or reinstated paths. The attribute can be added
to the defaults section or the multipaths section; for example:

multipaths {
 multipath {
 wwid XXXXXXXXXXXXXXXX
 alias yellow
 reservation_key 0x123abc
 }
}

Linking qemu-pr-helper to libmpathpersist does not impede
its usage on regular SCSI devices.

QEMU virtio-net standby (net_failover)

This document explains the setup and usage of virtio-net standby feature which
is used to create a net_failover pair of devices.

The general idea is that we have a pair of devices, a (vfio-)pci and a
virtio-net device. Before migration the vfio device is unplugged and data flows
through the virtio-net device, on the target side another vfio-pci device is
plugged in to take over the data-path. In the guest the net_failover kernel
module will pair net devices with the same MAC address.

The two devices are called primary and standby device. The fast hardware based
networking device is called the primary device and the virtio-net device is the
standby device.

Restrictions

Currently only PCIe devices are allowed as primary devices, this restriction
can be lifted in the future with enhanced QEMU support. Also, only networking
devices are allowed as primary device. The user needs to ensure that primary
and standby devices are not plugged into the same PCIe slot.

Usecase

Virtio-net standby allows easy migration while using a passed-through fast
networking device by falling back to a virtio-net device for the duration of
the migration. It is like a simple version of a bond, the difference is that it
requires no configuration in the guest. When a guest is live-migrated to
another host QEMU will unplug the primary device via the PCIe based hotplug
handler and traffic will go through the virtio-net device. On the target
system the primary device will be automatically plugged back and the
net_failover module registers it again as the primary device.

Usage

The primary device can be hotplugged or be part of the startup configuration

	-device virtio-net-pci,netdev=hostnet1,id=net1,mac=52:54:00:6f:55:cc,

	bus=root2,failover=on

With the parameter failover=on the VIRTIO_NET_F_STANDBY feature will be enabled.

-device vfio-pci,host=5e:00.2,id=hostdev0,bus=root1,failover_pair_id=net1

failover_pair_id references the id of the virtio-net standby device. This
is only for pairing the devices within QEMU. The guest kernel module
net_failover will match devices with identical MAC addresses.

Hotplug

Both primary and standby device can be hotplugged via the QEMU monitor. Note
that if the virtio-net device is plugged first a warning will be issued that it
couldn’t find the primary device.

Migration

A new migration state wait-unplug was added for this feature. If failover primary
devices are present in the configuration, migration will go into this state.
It will wait until the device unplug is completed in the guest and then move into
active state. On the target system the primary devices will be automatically hotplugged
when the feature bit was negotiated for the virtio-net standby device.

QEMU virtio pmem

This document explains the setup and usage of the virtio pmem device
which is available since QEMU v4.1.0.

The virtio pmem device is a paravirtualized persistent memory device
on regular (i.e non-NVDIMM) storage.

Usecase

Virtio pmem allows to bypass the guest page cache and directly use
host page cache. This reduces guest memory footprint as the host can
make efficient memory reclaim decisions under memory pressure.

o How does virtio-pmem compare to the nvdimm emulation supported by QEMU?

NVDIMM emulation on regular (i.e. non-NVDIMM) host storage does not
persist the guest writes as there are no defined semantics in the device
specification. The virtio pmem device provides guest write persistence
on non-NVDIMM host storage.

virtio pmem usage

A virtio pmem device backed by a memory-backend-file can be created on
the QEMU command line as in the following example:

-object memory-backend-file,id=mem1,share,mem-path=./virtio_pmem.img,size=4G
-device virtio-pmem-pci,memdev=mem1,id=nv1

where:

	“object memory-backend-file,id=mem1,share,mem-path=<image>, size=<image size>”
creates a backend file with the specified size.

	“device virtio-pmem-pci,id=nvdimm1,memdev=mem1” creates a virtio pmem
pci device whose storage is provided by above memory backend device.

Multiple virtio pmem devices can be created if multiple pairs of “-object”
and “-device” are provided.

Hotplug

Virtio pmem devices can be hotplugged via the QEMU monitor. First, the
memory backing has to be added via ‘object_add’; afterwards, the virtio
pmem device can be added via ‘device_add’.

For example, the following commands add another 4GB virtio pmem device to
the guest:

(qemu) object_add memory-backend-file,id=mem2,share=on,mem-path=virtio_pmem2.img,size=4G
(qemu) device_add virtio-pmem-pci,id=virtio_pmem2,memdev=mem2

Guest Data Persistence

Guest data persistence on non-NVDIMM requires guest userspace applications
to perform fsync/msync. This is different from a real nvdimm backend where
no additional fsync/msync is required. This is to persist guest writes in
host backing file which otherwise remains in host page cache and there is
risk of losing the data in case of power failure.

With virtio pmem device, MAP_SYNC mmap flag is not supported. This provides
a hint to application to perform fsync for write persistence.

Limitations

	Real nvdimm device backend is not supported.

	virtio pmem hotunplug is not supported.

	ACPI NVDIMM features like regions/namespaces are not supported.

	ndctl command is not supported.

QEMU block drivers reference

Synopsis

QEMU block driver reference manual

Description

Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with
any of the tools (like qemu-img). This includes the preferred formats
raw and qcow2 as well as formats that are supported for compatibility with
older QEMU versions or other hypervisors.

Depending on the image format, different options can be passed to
qemu-img create and qemu-img convert using the -o option.
This section describes each format and the options that are supported for it.

	
raw

	Raw disk image format. This format has the advantage of
being simple and easily exportable to all other emulators. If your
file system supports holes (for example in ext2 or ext3 on
Linux or NTFS on Windows), then only the written sectors will reserve
space. Use qemu-img info to know the real size used by the
image or ls -ls on Unix/Linux.

Supported options:

	
preallocation

	Preallocation mode (allowed values: off, falloc,
full). falloc mode preallocates space for image by
calling posix_fallocate(). full mode preallocates space
for image by writing data to underlying storage. This data may or
may not be zero, depending on the storage location.

	
qcow2

	QEMU image format, the most versatile format. Use it to have smaller
images (useful if your filesystem does not supports holes, for example
on Windows), zlib based compression and support of multiple VM
snapshots.

Supported options:

	
compat

	Determines the qcow2 version to use. compat=0.10 uses the
traditional image format that can be read by any QEMU since 0.10.
compat=1.1 enables image format extensions that only QEMU 1.1 and
newer understand (this is the default). Amongst others, this includes
zero clusters, which allow efficient copy-on-read for sparse images.

	
backing_file

	File name of a base image (see create subcommand)

	
backing_fmt

	Image format of the base image

	
encryption

	This option is deprecated and equivalent to encrypt.format=aes

	
encrypt.format

	If this is set to luks, it requests that the qcow2 payload (not
qcow2 header) be encrypted using the LUKS format. The passphrase to
use to unlock the LUKS key slot is given by the encrypt.key-secret
parameter. LUKS encryption parameters can be tuned with the other
encrypt.* parameters.

If this is set to aes, the image is encrypted with 128-bit AES-CBC.
The encryption key is given by the encrypt.key-secret parameter.
This encryption format is considered to be flawed by modern cryptography
standards, suffering from a number of design problems:

	The AES-CBC cipher is used with predictable initialization vectors based
on the sector number. This makes it vulnerable to chosen plaintext attacks
which can reveal the existence of encrypted data.

	The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the encryption.

	In the event of the passphrase being compromised there is no way to
change the passphrase to protect data in any qcow images. The files must
be cloned, using a different encryption passphrase in the new file. The
original file must then be securely erased using a program like shred,
though even this is ineffective with many modern storage technologies.

The use of this is no longer supported in system emulators. Support only
remains in the command line utilities, for the purposes of data liberation
and interoperability with old versions of QEMU. The luks format
should be used instead.

	
encrypt.key-secret

	Provides the ID of a secret object that contains the passphrase
(encrypt.format=luks) or encryption key (encrypt.format=aes).

	
encrypt.cipher-alg

	Name of the cipher algorithm and key length. Currently defaults
to aes-256. Only used when encrypt.format=luks.

	
encrypt.cipher-mode

	Name of the encryption mode to use. Currently defaults to xts.
Only used when encrypt.format=luks.

	
encrypt.ivgen-alg

	Name of the initialization vector generator algorithm. Currently defaults
to plain64. Only used when encrypt.format=luks.

	
encrypt.ivgen-hash-alg

	Name of the hash algorithm to use with the initialization vector generator
(if required). Defaults to sha256. Only used when encrypt.format=luks.

	
encrypt.hash-alg

	Name of the hash algorithm to use for PBKDF algorithm
Defaults to sha256. Only used when encrypt.format=luks.

	
encrypt.iter-time

	Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
Defaults to 2000. Only used when encrypt.format=luks.

	
cluster_size

	Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
sizes can improve the image file size whereas larger cluster sizes generally
provide better performance.

	
preallocation

	Preallocation mode (allowed values: off, metadata, falloc,
full). An image with preallocated metadata is initially larger but can
improve performance when the image needs to grow. falloc and full
preallocations are like the same options of raw format, but sets up
metadata also.

	
lazy_refcounts

	If this option is set to on, reference count updates are postponed with
the goal of avoiding metadata I/O and improving performance. This is
particularly interesting with cache=writethrough which doesn’t batch
metadata updates. The tradeoff is that after a host crash, the reference count
tables must be rebuilt, i.e. on the next open an (automatic) qemu-img
check -r all is required, which may take some time.

This option can only be enabled if compat=1.1 is specified.

	
nocow

	If this option is set to on, it will turn off COW of the file. It’s only
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more
when the guest on the VM also using btrfs as file system. Turning off
COW is a way to mitigate this bad performance. Generally there are two
ways to turn off COW on btrfs:

	Disable it by mounting with nodatacow, then all newly created files
will be NOCOW.

	For an empty file, add the NOCOW file attribute. That’s what this
option does.

Note: this option is only valid to new or empty files. If there is
an existing file which is COW and has data blocks already, it couldn’t
be changed to NOCOW by setting nocow=on. One can issue lsattr
filename to check if the NOCOW flag is set or not (Capital ‘C’ is
NOCOW flag).

	
qed

	Old QEMU image format with support for backing files and compact image files
(when your filesystem or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the
lazy_refcounts=on option to get a more QED-like behaviour.

Supported options:

	
backing_file

	File name of a base image (see create subcommand).

	
backing_fmt

	Image file format of backing file (optional). Useful if the format cannot be
autodetected because it has no header, like some vhd/vpc files.

	
cluster_size

	Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.

	
table_size

	Changes the number of clusters per L1/L2 table (must be
power-of-2 between 1 and 16). There is normally no need to
change this value but this option can between used for
performance benchmarking.

	
qcow

	Old QEMU image format with support for backing files, compact image files,
encryption and compression.

Supported options:

	
backing_file

	File name of a base image (see create subcommand)

	
encryption

	This option is deprecated and equivalent to encrypt.format=aes

	
encrypt.format

	If this is set to aes, the image is encrypted with 128-bit AES-CBC.
The encryption key is given by the encrypt.key-secret parameter.
This encryption format is considered to be flawed by modern cryptography
standards, suffering from a number of design problems enumerated previously
against the qcow2 image format.

The use of this is no longer supported in system emulators. Support only
remains in the command line utilities, for the purposes of data liberation
and interoperability with old versions of QEMU.

Users requiring native encryption should use the qcow2 format
instead with encrypt.format=luks.

	
encrypt.key-secret

	Provides the ID of a secret object that contains the encryption
key (encrypt.format=aes).

	
luks

	LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup

Supported options:

	
key-secret

	Provides the ID of a secret object that contains the passphrase.

	
cipher-alg

	Name of the cipher algorithm and key length. Currently defaults
to aes-256.

	
cipher-mode

	Name of the encryption mode to use. Currently defaults to xts.

	
ivgen-alg

	Name of the initialization vector generator algorithm. Currently defaults
to plain64.

	
ivgen-hash-alg

	Name of the hash algorithm to use with the initialization vector generator
(if required). Defaults to sha256.

	
hash-alg

	Name of the hash algorithm to use for PBKDF algorithm
Defaults to sha256.

	
iter-time

	Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
Defaults to 2000.

	
vdi

	VirtualBox 1.1 compatible image format.

Supported options:

	
static

	If this option is set to on, the image is created with metadata
preallocation.

	
vmdk

	VMware 3 and 4 compatible image format.

Supported options:

	
backing_file

	File name of a base image (see create subcommand).

	
compat6

	Create a VMDK version 6 image (instead of version 4)

	
hwversion

	Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
if hwversion is specified.

	
subformat

	Specifies which VMDK subformat to use. Valid options are
monolithicSparse (default),
monolithicFlat,
twoGbMaxExtentSparse,
twoGbMaxExtentFlat and
streamOptimized.

	
vpc

	VirtualPC compatible image format (VHD).

Supported options:

	
subformat

	Specifies which VHD subformat to use. Valid options are
dynamic (default) and fixed.

	
VHDX

	Hyper-V compatible image format (VHDX).

Supported options:

	
subformat

	Specifies which VHDX subformat to use. Valid options are
dynamic (default) and fixed.

	
block_state_zero

	Force use of payload blocks of type ‘ZERO’. Can be set to on (default)
or off. When set to off, new blocks will be created as
PAYLOAD_BLOCK_NOT_PRESENT, which means parsers are free to return
arbitrary data for those blocks. Do not set to off when using
qemu-img convert with subformat=dynamic.

	
block_size

	Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on
image size.

	
log_size

	Log size; min 1 MB.

Read-only formats

More disk image file formats are supported in a read-only mode.

	
bochs

	Bochs images of growing type.

	
cloop

	Linux Compressed Loop image, useful only to reuse directly compressed
CD-ROM images present for example in the Knoppix CD-ROMs.

	
dmg

	Apple disk image.

	
parallels

	Parallels disk image format.

Using host drives

In addition to disk image files, QEMU can directly access host
devices. We describe here the usage for QEMU version >= 0.8.3.

Linux

On Linux, you can directly use the host device filename instead of a
disk image filename provided you have enough privileges to access
it. For example, use /dev/cdrom to access to the CDROM.

	CD

	You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by
the guest OS is supported. Currently only data CDs are supported.

	Floppy

	You can specify a floppy device even if no floppy is loaded. Floppy
removal is currently not detected accurately (if you change floppy
without doing floppy access while the floppy is not loaded, the guest
OS will think that the same floppy is loaded).
Use of the host’s floppy device is deprecated, and support for it will
be removed in a future release.

	Hard disks

	Hard disks can be used. Normally you must specify the whole disk
(/dev/hdb instead of /dev/hdb1) so that the guest OS can
see it as a partitioned disk. WARNING: unless you know what you do, it
is better to only make READ-ONLY accesses to the hard disk otherwise
you may corrupt your host data (use the -snapshot command
line option or modify the device permissions accordingly).

Windows

	CD

	The preferred syntax is the drive letter (e.g. d:). The
alternate syntax \\.\d: is supported. /dev/cdrom is
supported as an alias to the first CDROM drive.

Currently there is no specific code to handle removable media, so it
is better to use the change or eject monitor commands to
change or eject media.

	Hard disks

	Hard disks can be used with the syntax: \\.\PhysicalDriveN
where N is the drive number (0 is the first hard disk).

WARNING: unless you know what you do, it is better to only make
READ-ONLY accesses to the hard disk otherwise you may corrupt your
host data (use the -snapshot command line so that the
modifications are written in a temporary file).

Mac OS X

/dev/cdrom is an alias to the first CDROM.

Currently there is no specific code to handle removable media, so it
is better to use the change or eject monitor commands to
change or eject media.

Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:

qemu-system-x86_64 linux.img -hdb fat:/my_directory

Then you access access to all the files in the /my_directory
directory without having to copy them in a disk image or to export
them via SAMBA or NFS. The default access is read-only.

Floppies can be emulated with the :floppy: option:

qemu-system-x86_64 linux.img -fda fat:floppy:/my_directory

A read/write support is available for testing (beta stage) with the
:rw: option:

qemu-system-x86_64 linux.img -fda fat:floppy:rw:/my_directory

What you should never do:

	use non-ASCII filenames

	use “-snapshot” together with “:rw:”

	expect it to work when loadvm’ing

	write to the FAT directory on the host system while accessing it with the guest system

NBD access

QEMU can access directly to block device exported using the Network Block Device
protocol.

qemu-system-x86_64 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/

If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:

qemu-system-x86_64 linux.img -hdb nbd+unix://?socket=/tmp/my_socket

In this case, the block device must be exported using qemu-nbd:

qemu-nbd --socket=/tmp/my_socket my_disk.qcow2

The use of qemu-nbd allows sharing of a disk between several guests:

qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2

and then you can use it with two guests:

qemu-system-x86_64 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
qemu-system-x86_64 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket

If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU’s
own embedded NBD server), you must specify an export name in the URI:

qemu-system-x86_64 -cdrom nbd://localhost/debian-500-ppc-netinst
qemu-system-x86_64 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst

The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
also available. Here are some example of the older syntax:

qemu-system-x86_64 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
qemu-system-x86_64 linux2.img -hdb nbd:unix:/tmp/my_socket
qemu-system-x86_64 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst

Sheepdog disk images

Sheepdog is a distributed storage system for QEMU. It provides highly
available block level storage volumes that can be attached to
QEMU-based virtual machines.

You can create a Sheepdog disk image with the command:

qemu-img create sheepdog:///IMAGE SIZE

where IMAGE is the Sheepdog image name and SIZE is its
size.

To import the existing FILENAME to Sheepdog, you can use a
convert command.

qemu-img convert FILENAME sheepdog:///IMAGE

You can boot from the Sheepdog disk image with the command:

qemu-system-x86_64 sheepdog:///IMAGE

You can also create a snapshot of the Sheepdog image like qcow2.

qemu-img snapshot -c TAG sheepdog:///IMAGE

where TAG is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.

qemu-system-x86_64 sheepdog:///IMAGE#TAG

You can create a cloned image from the existing snapshot.

qemu-img create -b sheepdog:///BASE#TAG sheepdog:///IMAGE

where BASE is an image name of the source snapshot and TAG
is its tag name.

You can use an unix socket instead of an inet socket:

qemu-system-x86_64 sheepdog+unix:///IMAGE?socket=PATH

If the Sheepdog daemon doesn’t run on the local host, you need to
specify one of the Sheepdog servers to connect to.

qemu-img create sheepdog://HOSTNAME:PORT/IMAGE SIZE
qemu-system-x86_64 sheepdog://HOSTNAME:PORT/IMAGE

iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer
network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as
any other ordinary SCSI device on the host and then to access this device as a
/dev/sd device from QEMU. How to do this differs between host OSes.

The second method involves using the iSCSI initiator that is built into
QEMU. This provides a mechanism that works the same way regardless of which
host OS you are running QEMU on. This section will describe this second method
of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs. URL syntax:

iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn-name>/<lun>

Username and password are optional and only used if your target is set up
using CHAP authentication for access control.
Alternatively the username and password can also be set via environment
variables to have these not show up in the process list:

export LIBISCSI_CHAP_USERNAME=<username>
export LIBISCSI_CHAP_PASSWORD=<password>
iscsi://<host>/<target-iqn-name>/<lun>

Various session related parameters can be set via special options, either
in a configuration file provided via ‘-readconfig’ or directly on the
command line.

If the initiator-name is not specified qemu will use a default name
of ‘iqn.2008-11.org.linux-kvm[:<uuid>’] where <uuid> is the UUID of the
virtual machine. If the UUID is not specified qemu will use
‘iqn.2008-11.org.linux-kvm[:<name>’] where <name> is the name of the
virtual machine.

Setting a specific initiator name to use when logging in to the target:

-iscsi initiator-name=iqn.qemu.test:my-initiator

Controlling which type of header digest to negotiate with the target:

-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

These can also be set via a configuration file:

[iscsi]
 user = "CHAP username"
 password = "CHAP password"
 initiator-name = "iqn.qemu.test:my-initiator"
 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 header-digest = "CRC32C"

Setting the target name allows different options for different targets:

[iscsi "iqn.target.name"]
 user = "CHAP username"
 password = "CHAP password"
 initiator-name = "iqn.qemu.test:my-initiator"
 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 header-digest = "CRC32C"

How to use a configuration file to set iSCSI configuration options:

cat >iscsi.conf <<EOF
[iscsi]
 user = "me"
 password = "my password"
 initiator-name = "iqn.qemu.test:my-initiator"
 header-digest = "CRC32C"
EOF

qemu-system-x86_64 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 -readconfig iscsi.conf

How to set up a simple iSCSI target on loopback and access it via QEMU:
this example shows how to set up an iSCSI target with one CDROM and one DISK
using the Linux STGT software target. This target is available on Red Hat based
systems as the package ‘scsi-target-utils’.

tgtd --iscsi portal=127.0.0.1:3260
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
 -b /IMAGES/disk.img --device-type=disk
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
 -b /IMAGES/cd.iso --device-type=cd
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

qemu-system-x86_64 -iscsi initiator-name=iqn.qemu.test:my-initiator \
 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2

GlusterFS disk images

GlusterFS is a user space distributed file system.

You can boot from the GlusterFS disk image with the command:

URI:

qemu-system-x86_64 -drive file=gluster[+TYPE]://[HOST}[:PORT]]/VOLUME/PATH
 [?socket=...][,file.debug=9][,file.logfile=...]

JSON:

qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
 "server":[{"type":"tcp","host":"...","port":"..."},
 {"type":"unix","socket":"..."}]}}'

gluster is the protocol.

TYPE specifies the transport type used to connect to gluster
management daemon (glusterd). Valid transport types are
tcp and unix. In the URI form, if a transport type isn’t specified,
then tcp type is assumed.

HOST specifies the server where the volume file specification for
the given volume resides. This can be either a hostname or an ipv4 address.
If transport type is unix, then HOST field should not be specified.
Instead socket field needs to be populated with the path to unix domain
socket.

PORT is the port number on which glusterd is listening. This is optional
and if not specified, it defaults to port 24007. If the transport type is unix,
then PORT should not be specified.

VOLUME is the name of the gluster volume which contains the disk image.

PATH is the path to the actual disk image that resides on gluster volume.

debug is the logging level of the gluster protocol driver. Debug levels
are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
The default level is 4. The current logging levels defined in the gluster source
are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
6 - Notice, 7 - Info, 8 - Debug, 9 - Trace

logfile is a commandline option to mention log file path which helps in
logging to the specified file and also help in persisting the gfapi logs. The
default is stderr.

You can create a GlusterFS disk image with the command:

qemu-img create gluster://HOST/VOLUME/PATH SIZE

Examples

qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img",
 "debug":9,"logfile":"/var/log/qemu-gluster.log",
 "server":[{"type":"tcp","host":"1.2.3.4","port":24007},
 {"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server
by using the ssh protocol:

qemu-system-x86_64 -drive file=ssh://[USER@]SERVER[:PORT]/PATH[?host_key_check=HOST_KEY_CHECK]

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=ssh[,file.user=USER],file.host=SERVER[,file.port=PORT],file.path=PATH[,file.host_key_check=HOST_KEY_CHECK]

ssh is the protocol.

USER is the remote user. If not specified, then the local
username is tried.

SERVER specifies the remote ssh server. Any ssh server can be
used, but it must implement the sftp-server protocol. Most Unix/Linux
systems should work without requiring any extra configuration.

PORT is the port number on which sshd is listening. By default
the standard ssh port (22) is used.

PATH is the path to the disk image.

The optional HOST_KEY_CHECK parameter controls how the remote
host’s key is checked. The default is yes which means to use
the local .ssh/known_hosts file. Setting this to no
turns off known-hosts checking. Or you can check that the host key
matches a specific fingerprint:
host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8
(sha1: can also be used as a prefix, but note that OpenSSH
tools only use MD5 to print fingerprints).

Currently authentication must be done using ssh-agent. Other
authentication methods may be supported in future.

Note: Many ssh servers do not support an fsync-style operation.
The ssh driver cannot guarantee that disk flush requests are
obeyed, and this causes a risk of disk corruption if the remote
server or network goes down during writes. The driver will
print a warning when fsync is not supported:

warning: ssh server ssh.example.com:22 does not support fsync

With sufficiently new versions of libssh and OpenSSH, fsync is
supported.

NVMe disk images

NVM Express (NVMe) storage controllers can be accessed directly by a userspace
driver in QEMU. This bypasses the host kernel file system and block layers
while retaining QEMU block layer functionalities, such as block jobs, I/O
throttling, image formats, etc. Disk I/O performance is typically higher than
with -drive file=/dev/sda using either thread pool or linux-aio.

The controller will be exclusively used by the QEMU process once started. To be
able to share storage between multiple VMs and other applications on the host,
please use the file based protocols.

Before starting QEMU, bind the host NVMe controller to the host vfio-pci
driver. For example:

modprobe vfio-pci
lspci -n -s 0000:06:0d.0
06:0d.0 0401: 1102:0002 (rev 08)
echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id

qemu-system-x86_64 -drive file=nvme://HOST:BUS:SLOT.FUNC/NAMESPACE

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=nvme,file.device=HOST:BUS:SLOT.FUNC,file.namespace=NAMESPACE

HOST:BUS:SLOT.FUNC is the NVMe controller’s PCI device
address on the host.

NAMESPACE is the NVMe namespace number, starting from 1.

Disk image file locking

By default, QEMU tries to protect image files from unexpected concurrent
access, as long as it’s supported by the block protocol driver and host
operating system. If multiple QEMU processes (including QEMU emulators and
utilities) try to open the same image with conflicting accessing modes, all but
the first one will get an error.

This feature is currently supported by the file protocol on Linux with the Open
File Descriptor (OFD) locking API, and can be configured to fall back to POSIX
locking if the POSIX host doesn’t support Linux OFD locking.

To explicitly enable image locking, specify “locking=on” in the file protocol
driver options. If OFD locking is not possible, a warning will be printed and
the POSIX locking API will be used. In this case there is a risk that the lock
will get silently lost when doing hot plugging and block jobs, due to the
shortcomings of the POSIX locking API.

QEMU transparently handles lock handover during shared storage migration. For
shared virtual disk images between multiple VMs, the “share-rw” device option
should be used.

By default, the guest has exclusive write access to its disk image. If the
guest can safely share the disk image with other writers the
-device ...,share-rw=on parameter can be used. This is only safe if
the guest is running software, such as a cluster file system, that
coordinates disk accesses to avoid corruption.

Note that share-rw=on only declares the guest’s ability to share the disk.
Some QEMU features, such as image file formats, require exclusive write access
to the disk image and this is unaffected by the share-rw=on option.

Alternatively, locking can be fully disabled by “locking=off” block device
option. In the command line, the option is usually in the form of
“file.locking=off” as the protocol driver is normally placed as a “file” child
under a format driver. For example:

-blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file

To check if image locking is active, check the output of the “lslocks” command
on host and see if there are locks held by the QEMU process on the image file.
More than one byte could be locked by the QEMU instance, each byte of which
reflects a particular permission that is acquired or protected by the running
block driver.

See also

The HTML documentation of QEMU for more precise information and Linux
user mode emulator invocation.

QEMU / KVM CPU model configuration

Synopsis

QEMU CPU Modelling Infrastructure manual

Description

Recommendations for KVM CPU model configuration on x86 hosts

The information that follows provides recommendations for configuring
CPU models on x86 hosts. The goals are to maximise performance, while
protecting guest OS against various CPU hardware flaws, and optionally
enabling live migration between hosts with heterogeneous CPU models.

Two ways to configure CPU models with QEMU / KVM

	Host passthrough

This passes the host CPU model features, model, stepping, exactly to
the guest. Note that KVM may filter out some host CPU model features
if they cannot be supported with virtualization. Live migration is
unsafe when this mode is used as libvirt / QEMU cannot guarantee a
stable CPU is exposed to the guest across hosts. This is the
recommended CPU to use, provided live migration is not required.

	Named model

QEMU comes with a number of predefined named CPU models, that
typically refer to specific generations of hardware released by
Intel and AMD. These allow the guest VMs to have a degree of
isolation from the host CPU, allowing greater flexibility in live
migrating between hosts with differing hardware. @end table

In both cases, it is possible to optionally add or remove individual CPU
features, to alter what is presented to the guest by default.

Libvirt supports a third way to configure CPU models known as “Host
model”. This uses the QEMU “Named model” feature, automatically picking
a CPU model that is similar the host CPU, and then adding extra features
to approximate the host model as closely as possible. This does not
guarantee the CPU family, stepping, etc will precisely match the host
CPU, as they would with “Host passthrough”, but gives much of the
benefit of passthrough, while making live migration safe.

Preferred CPU models for Intel x86 hosts

The following CPU models are preferred for use on Intel hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	Skylake-Server, Skylake-Server-IBRS

	Intel Xeon Processor (Skylake, 2016)

	Skylake-Client, Skylake-Client-IBRS

	Intel Core Processor (Skylake, 2015)

	Broadwell, Broadwell-IBRS, Broadwell-noTSX, Broadwell-noTSX-IBRS

	Intel Core Processor (Broadwell, 2014)

	Haswell, Haswell-IBRS, Haswell-noTSX, Haswell-noTSX-IBRS

	Intel Core Processor (Haswell, 2013)

	IvyBridge, IvyBridge-IBR

	Intel Xeon E3-12xx v2 (Ivy Bridge, 2012)

	SandyBridge, SandyBridge-IBRS

	Intel Xeon E312xx (Sandy Bridge, 2011)

	Westmere, Westmere-IBRS

	Westmere E56xx/L56xx/X56xx (Nehalem-C, 2010)

	Nehalem, Nehalem-IBRS

	Intel Core i7 9xx (Nehalem Class Core i7, 2008)

	Penryn

	Intel Core 2 Duo P9xxx (Penryn Class Core 2, 2007)

	Conroe

	Intel Celeron_4x0 (Conroe/Merom Class Core 2, 2006)

Important CPU features for Intel x86 hosts

The following are important CPU features that should be used on Intel
x86 hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using “Host passthrough” or “Host model”.

	pcid

	Recommended to mitigate the cost of the Meltdown (CVE-2017-5754) fix.

Included by default in Haswell, Broadwell & Skylake Intel CPU models.

Should be explicitly turned on for Westmere, SandyBridge, and
IvyBridge Intel CPU models. Note that some desktop/mobile Westmere
CPUs cannot support this feature.

	spec-ctrl

	Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in Intel CPU models with -IBRS suffix.

Must be explicitly turned on for Intel CPU models without -IBRS
suffix.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	stibp

	Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it can
be used for guest CPUs.

	ssbd

	Required to enable the CVE-2018-3639 fix.

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	pdpe1gb

	Recommended to allow guest OS to use 1GB size pages.

Not included by default in any Intel CPU model.

Should be explicitly turned on for all Intel CPU models.

Note that not all CPU hardware will support this feature.

	md-clear

	Required to confirm the MDS (CVE-2018-12126, CVE-2018-12127,
CVE-2018-12130, CVE-2019-11091) fixes.

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

Preferred CPU models for AMD x86 hosts

The following CPU models are preferred for use on Intel hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	EPYC, EPYC-IBPB

	AMD EPYC Processor (2017)

	Opteron_G5

	AMD Opteron 63xx class CPU (2012)

	Opteron_G4

	AMD Opteron 62xx class CPU (2011)

	Opteron_G3

	AMD Opteron 23xx (Gen 3 Class Opteron, 2009)

	Opteron_G2

	AMD Opteron 22xx (Gen 2 Class Opteron, 2006)

	Opteron_G1

	AMD Opteron 240 (Gen 1 Class Opteron, 2004)

Important CPU features for AMD x86 hosts

The following are important CPU features that should be used on AMD x86
hosts, when available in the host CPU. Some of them require explicit
configuration to enable, as they are not included by default in some, or
all, of the named CPU models listed above. In general all of these
features are included if using “Host passthrough” or “Host model”.

	ibpb

	Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in AMD CPU models with -IBPB suffix.

Must be explicitly turned on for AMD CPU models without -IBPB suffix.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	stibp

	Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some
operating systems.

Must be explicitly turned on for all AMD CPU models.

Requires the host CPU microcode to support this feature before it
can be used for guest CPUs.

	virt-ssbd

	Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This should be provided to guests, even if amd-ssbd is also provided,
for maximum guest compatibility.

Note for some QEMU / libvirt versions, this must be force enabled when
when using “Host model”, because this is a virtual feature that
doesn’t exist in the physical host CPUs.

	amd-ssbd

	Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This provides higher performance than virt-ssbd so should be
exposed to guests whenever available in the host. virt-ssbd should
none the less also be exposed for maximum guest compatibility as some
kernels only know about virt-ssbd.

	amd-no-ssb

	Recommended to indicate the host is not vulnerable CVE-2018-3639

Not included by default in any AMD CPU model.

Future hardware generations of CPU will not be vulnerable to
CVE-2018-3639, and thus the guest should be told not to enable
its mitigations, by exposing amd-no-ssb. This is mutually
exclusive with virt-ssbd and amd-ssbd.

	pdpe1gb

	Recommended to allow guest OS to use 1GB size pages

Not included by default in any AMD CPU model.

Should be explicitly turned on for all AMD CPU models.

Note that not all CPU hardware will support this feature.

Default x86 CPU models

The default QEMU CPU models are designed such that they can run on all
hosts. If an application does not wish to do perform any host
compatibility checks before launching guests, the default is guaranteed
to work.

The default CPU models will, however, leave the guest OS vulnerable to
various CPU hardware flaws, so their use is strongly discouraged.
Applications should follow the earlier guidance to setup a better CPU
configuration, with host passthrough recommended if live migration is
not needed.

	qemu32, qemu64

	QEMU Virtual CPU version 2.5+ (32 & 64 bit variants)

qemu64 is used for x86_64 guests and qemu32 is used for i686
guests, when no -cpu argument is given to QEMU, or no <cpu> is
provided in libvirt XML.

Other non-recommended x86 CPUs

The following CPUs models are compatible with most AMD and Intel x86
hosts, but their usage is discouraged, as they expose a very limited
featureset, which prevents guests having optimal performance.

	kvm32, kvm64

	Common KVM processor (32 & 64 bit variants).

Legacy models just for historical compatibility with ancient QEMU
versions.

	486, athlon, phenom, coreduo, core2duo, n270, pentium, pentium2, pentium3

	Various very old x86 CPU models, mostly predating the introduction
of hardware assisted virtualization, that should thus not be
required for running virtual machines.

Syntax for configuring CPU models

The examples below illustrate the approach to configuring the various
CPU models / features in QEMU and libvirt.

QEMU command line

Host passthrough:

qemu-system-x86_64 -cpu host

Host passthrough with feature customization:

qemu-system-x86_64 -cpu host,-vmx,...

Named CPU models:

qemu-system-x86_64 -cpu Westmere

Named CPU models with feature customization:

qemu-system-x86_64 -cpu Westmere,+pcid,...

Libvirt guest XML

Host passthrough:

<cpu mode='host-passthrough'/>

Host passthrough with feature customization:

<cpu mode='host-passthrough'>
 <feature name="vmx" policy="disable"/>
 ...
</cpu>

Host model:

<cpu mode='host-model'/>

Host model with feature customization:

<cpu mode='host-model'>
 <feature name="vmx" policy="disable"/>
 ...
</cpu>

Named model:

<cpu mode='custom'>
 <model name="Westmere"/>
</cpu>

Named model with feature customization:

<cpu mode='custom'>
 <model name="Westmere"/>
 <feature name="pcid" policy="require"/>
 ...
</cpu>

Supported CPU model configurations on MIPS hosts

QEMU supports variety of MIPS CPU models:

Supported CPU models for MIPS32 hosts

The following CPU models are supported for use on MIPS32 hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	mips32r6-generic

	MIPS32 Processor (Release 6, 2015)

	P5600

	MIPS32 Processor (P5600, 2014)

	M14K, M14Kc

	MIPS32 Processor (M14K, 2009)

	74Kf

	MIPS32 Processor (74K, 2007)

	34Kf

	MIPS32 Processor (34K, 2006)

	24Kc, 24KEc, 24Kf

	MIPS32 Processor (24K, 2003)

	4Kc, 4Km, 4KEcR1, 4KEmR1, 4KEc, 4KEm

	MIPS32 Processor (4K, 1999)

Supported CPU models for MIPS64 hosts

The following CPU models are supported for use on MIPS64 hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	I6400

	MIPS64 Processor (Release 6, 2014)

	Loongson-2F

	MIPS64 Processor (Loongson 2, 2008)

	Loongson-2E

	MIPS64 Processor (Loongson 2, 2006)

	mips64dspr2

	MIPS64 Processor (Release 2, 2006)

	MIPS64R2-generic, 5KEc, 5KEf

	MIPS64 Processor (Release 2, 2002)

	20Kc

	MIPS64 Processor (20K, 2000

	5Kc, 5Kf

	MIPS64 Processor (5K, 1999)

	VR5432

	MIPS64 Processor (VR, 1998)

	R4000

	MIPS64 Processor (MIPS III, 1991)

Supported CPU models for nanoMIPS hosts

The following CPU models are supported for use on nanoMIPS hosts.
Administrators / applications are recommended to use the CPU model that
matches the generation of the host CPUs in use. In a deployment with a
mixture of host CPU models between machines, if live migration
compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

	I7200

	MIPS I7200 (nanoMIPS, 2018)

Preferred CPU models for MIPS hosts

The following CPU models are preferred for use on different MIPS hosts:

	MIPS III

	R4000

	MIPS32R2

	34Kf

	MIPS64R6

	I6400

	nanoMIPS

	I7200

See also

The HTML documentation of QEMU for more precise information and Linux user mode emulator invocation.

Title

Synopsis

qemu-system-x86_64 [options] [disk_image]

Description

The QEMU PC System emulator simulates the following peripherals:

	i440FX host PCI bridge and PIIX3 PCI to ISA bridge

	Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
extensions (hardware level, including all non standard modes).

	PS/2 mouse and keyboard

	2 PCI IDE interfaces with hard disk and CD-ROM support

	Floppy disk

	PCI and ISA network adapters

	Serial ports

	IPMI BMC, either and internal or external one

	Creative SoundBlaster 16 sound card

	ENSONIQ AudioPCI ES1370 sound card

	Intel 82801AA AC97 Audio compatible sound card

	Intel HD Audio Controller and HDA codec

	Adlib (OPL2) - Yamaha YM3812 compatible chip

	Gravis Ultrasound GF1 sound card

	CS4231A compatible sound card

	PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1
hub.

SMP is supported with up to 255 CPUs.

QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
VGA BIOS.

QEMU uses YM3812 emulation by Tatsuyuki Satoh.

QEMU uses GUS emulation (GUSEMU32 http://www.deinmeister.de/gusemu/) by
Tibor “TS” Schütz.

Note that, by default, GUS shares IRQ(7) with parallel ports and so QEMU
must be told to not have parallel ports to have working GUS.

qemu_system-x86_64 dos.img -soundhw gus -parallel none

Alternatively:

qemu_system-x86_64 dos.img -device gus,irq=5

Or some other unclaimed IRQ.

CS4231A is the chip used in Windows Sound System and GUSMAX products

Options

disk_image is a raw hard disk image for IDE hard disk 0. Some targets do
not need a disk image.

Standard options

	-h

	Display help and exit

	-version

	Display version information and exit

	-machine [type=]name[,prop=value[,...]]

	Select the emulated machine by name. Use -machine help to list
available machines.

For architectures which aim to support live migration compatibility
across releases, each release will introduce a new versioned machine
type. For example, the 2.8.0 release introduced machine types
“pc-i440fx-2.8” and “pc-q35-2.8” for the x86_64/i686 architectures.

To allow live migration of guests from QEMU version 2.8.0, to QEMU
version 2.9.0, the 2.9.0 version must support the “pc-i440fx-2.8”
and “pc-q35-2.8” machines too. To allow users live migrating VMs to
skip multiple intermediate releases when upgrading, new releases of
QEMU will support machine types from many previous versions.

Supported machine properties are:

	accel=accels1[:accels2[:...]]

	This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available.
By default, tcg is used. If there is more than one accelerator
specified, the next one is used if the previous one fails to
initialize.

	vmport=on|off|auto

	Enables emulation of VMWare IO port, for vmmouse etc. auto says
to select the value based on accel. For accel=xen the default is
off otherwise the default is on.

	dump-guest-core=on|off

	Include guest memory in a core dump. The default is on.

	mem-merge=on|off

	Enables or disables memory merge support. This feature, when
supported by the host, de-duplicates identical memory pages
among VMs instances (enabled by default).

	aes-key-wrap=on|off

	Enables or disables AES key wrapping support on s390-ccw hosts.
This feature controls whether AES wrapping keys will be created
to allow execution of AES cryptographic functions. The default
is on.

	dea-key-wrap=on|off

	Enables or disables DEA key wrapping support on s390-ccw hosts.
This feature controls whether DEA wrapping keys will be created
to allow execution of DEA cryptographic functions. The default
is on.

	nvdimm=on|off

	Enables or disables NVDIMM support. The default is off.

	enforce-config-section=on|off

	If enforce-config-section is set to on, force migration code
to send configuration section even if the machine-type sets the
migration.send-configuration property to off. NOTE: this
parameter is deprecated. Please use -global
migration.send-configuration=on|off instead.

	memory-encryption=

	Memory encryption object to use. The default is none.

	hmat=on|off

	Enables or disables ACPI Heterogeneous Memory Attribute Table
(HMAT) support. The default is off.

	-cpu model

	Select CPU model (-cpu help for list and additional feature
selection)

	-accel name[,prop=value[,...]]

	This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available. By
default, tcg is used. If there is more than one accelerator
specified, the next one is used if the previous one fails to
initialize.

	igd-passthru=on|off

	When Xen is in use, this option controls whether Intel
integrated graphics devices can be passed through to the guest
(default=off)

	kernel-irqchip=on|off|split

	Controls KVM in-kernel irqchip support. The default is full
acceleration of the interrupt controllers. On x86, split irqchip
reduces the kernel attack surface, at a performance cost for
non-MSI interrupts. Disabling the in-kernel irqchip completely
is not recommended except for debugging purposes.

	kvm-shadow-mem=size

	Defines the size of the KVM shadow MMU.

	tb-size=n

	Controls the size (in MiB) of the TCG translation block cache.

	thread=single|multi

	Controls number of TCG threads. When the TCG is multi-threaded
there will be one thread per vCPU therefor taking advantage of
additional host cores. The default is to enable multi-threading
where both the back-end and front-ends support it and no
incompatible TCG features have been enabled (e.g.
icount/replay).

	-smp [cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]

	Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs
are supported. On Sparc32 target, Linux limits the number of usable
CPUs to 4. For the PC target, the number of cores per die, the
number of threads per cores, the number of dies per packages and the
total number of sockets can be specified. Missing values will be
computed. If any on the three values is given, the total number of
CPUs n can be omitted. maxcpus specifies the maximum number of
hotpluggable CPUs.

	-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]

	

	-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]

	

	-numa dist,src=source,dst=destination,val=distance

	

	-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]

	

	-numa hmat-lb,initiator=node,target=node,hierarchy=hierarchy,data-type=tpye[,latency=lat][,bandwidth=bw]

	

	-numa hmat-cache,node-id=node,size=size,level=level[,associativity=str][,policy=str][,line=size]

	Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA
distance from a source node to a destination node. Set the ACPI
Heterogeneous Memory Attributes for the given nodes.

Legacy VCPU assignment uses ‘cpus’ option where firstcpu and
lastcpu are CPU indexes. Each ‘cpus’ option represent a
contiguous range of CPU indexes (or a single VCPU if lastcpu is
omitted). A non-contiguous set of VCPUs can be represented by
providing multiple ‘cpus’ options. If ‘cpus’ is
omitted on all nodes, VCPUs are automatically split between them.

For example, the following option assigns VCPUs 0, 1, 2 and 5 to a
NUMA node:

-numa node,cpus=0-2,cpus=5

‘cpu’ option is a new alternative to ‘cpus’ option
which uses ‘socket-id|core-id|thread-id’ properties to
assign CPU objects to a node using topology layout properties of
CPU. The set of properties is machine specific, and depends on used
machine type/’smp’ options. It could be queried with
‘hotpluggable-cpus’ monitor command. ‘node-id’
property specifies node to which CPU object will be assigned, it’s
required for node to be declared with ‘node’ option before
it’s used with ‘cpu’ option.

For example:

-M pc \
-smp 1,sockets=2,maxcpus=2 \
-numa node,nodeid=0 -numa node,nodeid=1 \
-numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1

‘mem’ assigns a given RAM amount to a node. ‘memdev’
assigns RAM from a given memory backend device to a node. If
‘mem’ and ‘memdev’ are omitted in all nodes, RAM is
split equally between them.

‘mem’ and ‘memdev’ are mutually exclusive.
Furthermore, if one node uses ‘memdev’, all of them have to
use it.

‘initiator’ is an additional option that points to an
initiator NUMA node that has best performance (the lowest latency or
largest bandwidth) to this NUMA node. Note that this option can be
set only when the machine property ‘hmat’ is set to ‘on’.

Following example creates a machine with 2 NUMA nodes, node 0 has
CPU. node 1 has only memory, and its initiator is node 0. Note that
because node 0 has CPU, by default the initiator of node 0 is itself
and must be itself.

-machine hmat=on \
-m 2G,slots=2,maxmem=4G \
-object memory-backend-ram,size=1G,id=m0 \
-object memory-backend-ram,size=1G,id=m1 \
-numa node,nodeid=0,memdev=m0 \
-numa node,nodeid=1,memdev=m1,initiator=0 \
-smp 2,sockets=2,maxcpus=2 \
-numa cpu,node-id=0,socket-id=0 \
-numa cpu,node-id=0,socket-id=1

source and destination are NUMA node IDs. distance is the NUMA
distance from source to destination. The distance from a node to
itself is always 10. If any pair of nodes is given a distance, then
all pairs must be given distances. Although, when distances are only
given in one direction for each pair of nodes, then the distances in
the opposite directions are assumed to be the same. If, however, an
asymmetrical pair of distances is given for even one node pair, then
all node pairs must be provided distance values for both directions,
even when they are symmetrical. When a node is unreachable from
another node, set the pair’s distance to 255.

Note that the -numa option doesn’t allocate any of the specified
resources, it just assigns existing resources to NUMA nodes. This
means that one still has to use the -m, -smp options to
allocate RAM and VCPUs respectively.

Use ‘hmat-lb’ to set System Locality Latency and Bandwidth
Information between initiator and target NUMA nodes in ACPI
Heterogeneous Attribute Memory Table (HMAT). Initiator NUMA node can
create memory requests, usually it has one or more processors.
Target NUMA node contains addressable memory.

In ‘hmat-lb’ option, node are NUMA node IDs. hierarchy is
the memory hierarchy of the target NUMA node: if hierarchy is
‘memory’, the structure represents the memory performance; if
hierarchy is ‘first-level|second-level|third-level’, this
structure represents aggregated performance of memory side caches
for each domain. type of ‘data-type’ is type of data represented by
this structure instance: if ‘hierarchy’ is ‘memory’, ‘data-type’ is
‘access|read|write’ latency or ‘access|read|write’ bandwidth of
the target memory; if ‘hierarchy’ is
‘first-level|second-level|third-level’, ‘data-type’ is
‘access|read|write’ hit latency or ‘access|read|write’ hit
bandwidth of the target memory side cache.

lat is latency value in nanoseconds. bw is bandwidth value, the
possible value and units are NUM[M|G|T], mean that the bandwidth
value are NUM byte per second (or MB/s, GB/s or TB/s depending on
used suffix). Note that if latency or bandwidth value is 0, means
the corresponding latency or bandwidth information is not provided.

In ‘hmat-cache’ option, node-id is the NUMA-id of the memory
belongs. size is the size of memory side cache in bytes. level is
the cache level described in this structure, note that the cache
level 0 should not be used with ‘hmat-cache’ option.
associativity is the cache associativity, the possible value is
‘none/direct(direct-mapped)/complex(complex cache indexing)’. policy
is the write policy. line is the cache Line size in bytes.

For example, the following options describe 2 NUMA nodes. Node 0 has
2 cpus and a ram, node 1 has only a ram. The processors in node 0
access memory in node 0 with access-latency 5 nanoseconds,
access-bandwidth is 200 MB/s; The processors in NUMA node 0 access
memory in NUMA node 1 with access-latency 10 nanoseconds,
access-bandwidth is 100 MB/s. And for memory side cache information,
NUMA node 0 and 1 both have 1 level memory cache, size is 10KB,
policy is write-back, the cache Line size is 8 bytes:

-machine hmat=on \
-m 2G \
-object memory-backend-ram,size=1G,id=m0 \
-object memory-backend-ram,size=1G,id=m1 \
-smp 2 \
-numa node,nodeid=0,memdev=m0 \
-numa node,nodeid=1,memdev=m1,initiator=0 \
-numa cpu,node-id=0,socket-id=0 \
-numa cpu,node-id=0,socket-id=1 \
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
-numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
-numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8

	-add-fd fd=fd,set=set[,opaque=opaque]

	Add a file descriptor to an fd set. Valid options are:

	fd=fd

	This option defines the file descriptor of which a duplicate is
added to fd set. The file descriptor cannot be stdin, stdout, or
stderr.

	set=set

	This option defines the ID of the fd set to add the file
descriptor to.

	opaque=opaque

	This option defines a free-form string that can be used to
describe fd.

You can open an image using pre-opened file descriptors from an fd
set:

qemu-system-x86_64 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" -drive file=/dev/fdset/2,index=0,media=disk

	-set group.id.arg=value

	Set parameter arg for item id of type group

	-global driver.prop=value

	

	-global driver=driver,property=property,value=value

	Set default value of driver’s property prop to value, e.g.:

qemu_system-x86_64 -global ide-hd.physical_block_size=4096 disk-image.img

In particular, you can use this to set driver properties for devices
which are created automatically by the machine model. To create a
device which is not created automatically and set properties on it,
use -device.

-global driver.prop=value is shorthand for -global
driver=driver,property=prop,value=value. The longhand syntax works
even when driver contains a dot.

	-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]

	Specify boot order drives as a string of drive letters. Valid drive
letters depend on the target architecture. The x86 PC uses: a, b
(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
(Etherboot from network adapter 1-4), hard disk boot is the default.
To apply a particular boot order only on the first startup, specify
it via once. Note that the order or once parameter
should not be used together with the bootindex property of
devices, since the firmware implementations normally do not support
both at the same time.

Interactive boot menus/prompts can be enabled via menu=on as far
as firmware/BIOS supports them. The default is non-interactive boot.

A splash picture could be passed to bios, enabling user to show it
as logo, when option splash=sp_name is given and menu=on, If
firmware/BIOS supports them. Currently Seabios for X86 system
support it. limitation: The splash file could be a jpeg file or a
BMP file in 24 BPP format(true color). The resolution should be
supported by the SVGA mode, so the recommended is 320x240, 640x480,
800x640.

A timeout could be passed to bios, guest will pause for rb_timeout
ms when boot failed, then reboot. If rb_timeout is ‘-1’, guest will
not reboot, qemu passes ‘-1’ to bios by default. Currently Seabios
for X86 system support it.

Do strict boot via strict=on as far as firmware/BIOS supports
it. This only effects when boot priority is changed by bootindex
options. The default is non-strict boot.

try to boot from network first, then from hard disk
qemu_system-x86_64 -boot order=nc
boot from CD-ROM first, switch back to default order after reboot
qemu_system-x86_64 -boot once=d
boot with a splash picture for 5 seconds.
qemu_system-x86_64 -boot menu=on,splash=/root/boot.bmp,splash-time=5000

Note: The legacy format ‘-boot drives’ is still supported but its
use is discouraged as it may be removed from future versions.

	-m [size=]megs[,slots=n,maxmem=size]

	Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
Optionally, a suffix of “M” or “G” can be used to signify a value in
megabytes or gigabytes respectively. Optional pair slots, maxmem
could be used to set amount of hotpluggable memory slots and maximum
amount of memory. Note that maxmem must be aligned to the page size.

For example, the following command-line sets the guest startup RAM
size to 1GB, creates 3 slots to hotplug additional memory and sets
the maximum memory the guest can reach to 4GB:

qemu-system-x86_64 -m 1G,slots=3,maxmem=4G

If slots and maxmem are not specified, memory hotplug won’t be
enabled and the guest startup RAM will never increase.

	-mem-path path

	Allocate guest RAM from a temporarily created file in path.

	-mem-prealloc

	Preallocate memory when using -mem-path.

	-k language

	Use keyboard layout language (for example fr for French). This
option is only needed where it is not easy to get raw PC keycodes
(e.g. on Macs, with some X11 servers or with a VNC or curses
display). You don’t normally need to use it on PC/Linux or
PC/Windows hosts.

The available layouts are:

ar de-ch es fo fr-ca hu ja mk no pt-br sv
da en-gb et fr fr-ch is lt nl pl ru th
de en-us fi fr-be hr it lv nl-be pt sl tr

The default is en-us.

	-audio-help

	Will show the -audiodev equivalent of the currently specified
(deprecated) environment variables.

	-audiodev [driver=]driver,id=id[,prop[=value][,...]]

	Adds a new audio backend driver identified by id. There are global
and driver specific properties. Some values can be set differently
for input and output, they’re marked with in|out.. You can set
the input’s property with in.prop and the output’s property with
out.prop. For example:

-audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
-audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified

NOTE: parameter validation is known to be incomplete, in many cases
specifying an invalid option causes QEMU to print an error message
and continue emulation without sound.

Valid global options are:

	id=identifier

	Identifies the audio backend.

	timer-period=period

	Sets the timer period used by the audio subsystem in
microseconds. Default is 10000 (10 ms).

	in|out.mixing-engine=on|off

	Use QEMU’s mixing engine to mix all streams inside QEMU and
convert audio formats when not supported by the backend. When
off, fixed-settings must be off too. Note that disabling this
option means that the selected backend must support multiple
streams and the audio formats used by the virtual cards,
otherwise you’ll get no sound. It’s not recommended to disable
this option unless you want to use 5.1 or 7.1 audio, as mixing
engine only supports mono and stereo audio. Default is on.

	in|out.fixed-settings=on|off

	Use fixed settings for host audio. When off, it will change
based on how the guest opens the sound card. In this case you
must not specify frequency, channels or format. Default is on.

	in|out.frequency=frequency

	Specify the frequency to use when using fixed-settings. Default
is 44100Hz.

	in|out.channels=channels

	Specify the number of channels to use when using fixed-settings.
Default is 2 (stereo).

	in|out.format=format

	Specify the sample format to use when using fixed-settings.
Valid values are: s8, s16, s32, u8, u16,
u32. Default is s16.

	in|out.voices=voices

	Specify the number of voices to use. Default is 1.

	in|out.buffer-length=usecs

	Sets the size of the buffer in microseconds.

	-audiodev none,id=id[,prop[=value][,...]]

	Creates a dummy backend that discards all outputs. This backend has
no backend specific properties.

	-audiodev alsa,id=id[,prop[=value][,...]]

	Creates backend using the ALSA. This backend is only available on
Linux.

ALSA specific options are:

	in|out.dev=device

	Specify the ALSA device to use for input and/or output. Default
is default.

	in|out.period-length=usecs

	Sets the period length in microseconds.

	in|out.try-poll=on|off

	Attempt to use poll mode with the device. Default is on.

	threshold=threshold

	Threshold (in microseconds) when playback starts. Default is 0.

	-audiodev coreaudio,id=id[,prop[=value][,...]]

	Creates a backend using Apple’s Core Audio. This backend is only
available on Mac OS and only supports playback.

Core Audio specific options are:

	in|out.buffer-count=count

	Sets the count of the buffers.

	-audiodev dsound,id=id[,prop[=value][,...]]

	Creates a backend using Microsoft’s DirectSound. This backend is
only available on Windows and only supports playback.

DirectSound specific options are:

	latency=usecs

	Add extra usecs microseconds latency to playback. Default is
10000 (10 ms).

	-audiodev oss,id=id[,prop[=value][,...]]

	Creates a backend using OSS. This backend is available on most
Unix-like systems.

OSS specific options are:

	in|out.dev=device

	Specify the file name of the OSS device to use. Default is
/dev/dsp.

	in|out.buffer-count=count

	Sets the count of the buffers.

	in|out.try-poll=on|of

	Attempt to use poll mode with the device. Default is on.

	try-mmap=on|off

	Try using memory mapped device access. Default is off.

	exclusive=on|off

	Open the device in exclusive mode (vmix won’t work in this
case). Default is off.

	dsp-policy=policy

	Sets the timing policy (between 0 and 10, where smaller number
means smaller latency but higher CPU usage). Use -1 to use
buffer sizes specified by buffer and buffer-count. This
option is ignored if you do not have OSS 4. Default is 5.

	-audiodev pa,id=id[,prop[=value][,...]]

	Creates a backend using PulseAudio. This backend is available on
most systems.

PulseAudio specific options are:

	server=server

	Sets the PulseAudio server to connect to.

	in|out.name=sink

	Use the specified source/sink for recording/playback.

	in|out.latency=usecs

	Desired latency in microseconds. The PulseAudio server will try
to honor this value but actual latencies may be lower or higher.

	-audiodev sdl,id=id[,prop[=value][,...]]

	Creates a backend using SDL. This backend is available on most
systems, but you should use your platform’s native backend if
possible. This backend has no backend specific properties.

	-audiodev spice,id=id[,prop[=value][,...]]

	Creates a backend that sends audio through SPICE. This backend
requires -spice and automatically selected in that case, so
usually you can ignore this option. This backend has no backend
specific properties.

	-audiodev wav,id=id[,prop[=value][,...]]

	Creates a backend that writes audio to a WAV file.

Backend specific options are:

	path=path

	Write recorded audio into the specified file. Default is
qemu.wav.

	-soundhw card1[,card2,...] or -soundhw all

	Enable audio and selected sound hardware. Use ‘help’ to print all
available sound hardware. For example:

qemu_system-x86_64 -soundhw sb16,adlib disk.img
qemu_system-x86_64 -soundhw es1370 disk.img
qemu_system-x86_64 -soundhw ac97 disk.img
qemu_system-x86_64 -soundhw hda disk.img
qemu_system-x86_64 -soundhw all disk.img
qemu_system-x86_64 -soundhw help

Note that Linux’s i810_audio OSS kernel (for AC97) module might
require manually specifying clocking.

modprobe i810_audio clocking=48000

	-device driver[,prop[=value][,...]]

	Add device driver. prop=value sets driver properties. Valid
properties depend on the driver. To get help on possible drivers and
properties, use -device help and -device driver,help.

Some drivers are:

	-device ipmi-bmc-sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]

	Add an IPMI BMC. This is a simulation of a hardware management
interface processor that normally sits on a system. It provides a
watchdog and the ability to reset and power control the system. You
need to connect this to an IPMI interface to make it useful

The IPMI slave address to use for the BMC. The default is 0x20. This
address is the BMC’s address on the I2C network of management
controllers. If you don’t know what this means, it is safe to ignore
it.

	id=id

	The BMC id for interfaces to use this device.

	slave_addr=val

	Define slave address to use for the BMC. The default is 0x20.

	sdrfile=file

	file containing raw Sensor Data Records (SDR) data. The default
is none.

	fruareasize=val

	size of a Field Replaceable Unit (FRU) area. The default is
1024.

	frudatafile=file

	file containing raw Field Replaceable Unit (FRU) inventory data.
The default is none.

	guid=uuid

	value for the GUID for the BMC, in standard UUID format. If this
is set, get “Get GUID” command to the BMC will return it.
Otherwise “Get GUID” will return an error.

	-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]

	Add a connection to an external IPMI BMC simulator. Instead of
locally emulating the BMC like the above item, instead connect to an
external entity that provides the IPMI services.

A connection is made to an external BMC simulator. If you do this,
it is strongly recommended that you use the “reconnect=” chardev
option to reconnect to the simulator if the connection is lost. Note
that if this is not used carefully, it can be a security issue, as
the interface has the ability to send resets, NMIs, and power off
the VM. It’s best if QEMU makes a connection to an external
simulator running on a secure port on localhost, so neither the
simulator nor QEMU is exposed to any outside network.

See the “lanserv/README.vm” file in the OpenIPMI library for more
details on the external interface.

	-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]

	Add a KCS IPMI interafce on the ISA bus. This also adds a
corresponding ACPI and SMBIOS entries, if appropriate.

	bmc=id

	The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
above.

	ioport=val

	Define the I/O address of the interface. The default is 0xca0
for KCS.

	irq=val

	Define the interrupt to use. The default is 5. To disable
interrupts, set this to 0.

	-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]

	Like the KCS interface, but defines a BT interface. The default port
is 0xe4 and the default interrupt is 5.

	-name name

	Sets the name of the guest. This name will be displayed in the SDL
window caption. The name will also be used for the VNC server. Also
optionally set the top visible process name in Linux. Naming of
individual threads can also be enabled on Linux to aid debugging.

	-uuid uuid

	Set system UUID.

Block device options

	-fda file

	

	-fdb file

	Use file as floppy disk 0/1 image (see
Disk Images).

	-hda file

	

	-hdb file

	

	-hdc file

	

	-hdd file

	Use file as hard disk 0, 1, 2 or 3 image (see
Disk Images).

	-cdrom file

	Use file as CD-ROM image (you cannot use -hdc and -cdrom at
the same time). You can use the host CD-ROM by using /dev/cdrom
as filename.

	-blockdev option[,option[,option[,...]]]

	Define a new block driver node. Some of the options apply to all
block drivers, other options are only accepted for a specific block
driver. See below for a list of generic options and options for the
most common block drivers.

Options that expect a reference to another node (e.g. file) can
be given in two ways. Either you specify the node name of an already
existing node (file=node-name), or you define a new node inline,
adding options for the referenced node after a dot
(file.filename=path,file.aio=native).

A block driver node created with -blockdev can be used for a
guest device by specifying its node name for the drive property
in a -device argument that defines a block device.

	Valid options for any block driver node:

	
	driver

	Specifies the block driver to use for the given node.

	node-name

	This defines the name of the block driver node by which it
will be referenced later. The name must be unique, i.e. it
must not match the name of a different block driver node, or
(if you use -drive as well) the ID of a drive.

If no node name is specified, it is automatically generated.
The generated node name is not intended to be predictable
and changes between QEMU invocations. For the top level, an
explicit node name must be specified.

	read-only

	Open the node read-only. Guest write attempts will fail.

Note that some block drivers support only read-only access,
either generally or in certain configurations. In this case,
the default value read-only=off does not work and the
option must be specified explicitly.

	auto-read-only

	If auto-read-only=on is set, QEMU may fall back to
read-only usage even when read-only=off is requested, or
even switch between modes as needed, e.g. depending on
whether the image file is writable or whether a writing user
is attached to the node.

	force-share

	Override the image locking system of QEMU by forcing the
node to utilize weaker shared access for permissions where
it would normally request exclusive access. When there is
the potential for multiple instances to have the same file
open (whether this invocation of QEMU is the first or the
second instance), both instances must permit shared access
for the second instance to succeed at opening the file.

Enabling force-share=on requires read-only=on.

	cache.direct

	The host page cache can be avoided with cache.direct=on.
This will attempt to do disk IO directly to the guest’s
memory. QEMU may still perform an internal copy of the data.

	cache.no-flush

	In case you don’t care about data integrity over host
failures, you can use cache.no-flush=on. This option
tells QEMU that it never needs to write any data to the disk
but can instead keep things in cache. If anything goes
wrong, like your host losing power, the disk storage getting
disconnected accidentally, etc. your image will most
probably be rendered unusable.

	discard=discard

	discard is one of “ignore” (or “off”) or “unmap” (or “on”)
and controls whether discard (also known as trim or
unmap) requests are ignored or passed to the filesystem.
Some machine types may not support discard requests.

	detect-zeroes=detect-zeroes

	detect-zeroes is “off”, “on” or “unmap” and enables the
automatic conversion of plain zero writes by the OS to
driver specific optimized zero write commands. You may even
choose “unmap” if discard is set to “unmap” to allow a zero
write to be converted to an unmap operation.

	Driver-specific options for file

	This is the protocol-level block driver for accessing regular
files.

	filename

	The path to the image file in the local filesystem

	aio

	Specifies the AIO backend (threads/native, default: threads)

	locking

	Specifies whether the image file is protected with Linux OFD
/ POSIX locks. The default is to use the Linux Open File
Descriptor API if available, otherwise no lock is applied.
(auto/on/off, default: auto)

Example:

-blockdev driver=file,node-name=disk,filename=disk.img

	Driver-specific options for raw

	This is the image format block driver for raw images. It is
usually stacked on top of a protocol level block driver such as
file.

	file

	Reference to or definition of the data source block driver
node (e.g. a file driver node)

Example 1:

-blockdev driver=file,node-name=disk_file,filename=disk.img
-blockdev driver=raw,node-name=disk,file=disk_file

Example 2:

-blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img

	Driver-specific options for qcow2

	This is the image format block driver for qcow2 images. It is
usually stacked on top of a protocol level block driver such as
file.

	file

	Reference to or definition of the data source block driver
node (e.g. a file driver node)

	backing

	Reference to or definition of the backing file block device
(default is taken from the image file). It is allowed to
pass null here in order to disable the default backing
file.

	lazy-refcounts

	Whether to enable the lazy refcounts feature (on/off;
default is taken from the image file)

	cache-size

	The maximum total size of the L2 table and refcount block
caches in bytes (default: the sum of l2-cache-size and
refcount-cache-size)

	l2-cache-size

	The maximum size of the L2 table cache in bytes (default: if
cache-size is not specified - 32M on Linux platforms, and 8M
on non-Linux platforms; otherwise, as large as possible
within the cache-size, while permitting the requested or the
minimal refcount cache size)

	refcount-cache-size

	The maximum size of the refcount block cache in bytes
(default: 4 times the cluster size; or if cache-size is
specified, the part of it which is not used for the L2
cache)

	cache-clean-interval

	Clean unused entries in the L2 and refcount caches. The
interval is in seconds. The default value is 600 on
supporting platforms, and 0 on other platforms. Setting it
to 0 disables this feature.

	pass-discard-request

	Whether discard requests to the qcow2 device should be
forwarded to the data source (on/off; default: on if
discard=unmap is specified, off otherwise)

	pass-discard-snapshot

	Whether discard requests for the data source should be
issued when a snapshot operation (e.g. deleting a snapshot)
frees clusters in the qcow2 file (on/off; default: on)

	pass-discard-other

	Whether discard requests for the data source should be
issued on other occasions where a cluster gets freed
(on/off; default: off)

	overlap-check

	Which overlap checks to perform for writes to the image
(none/constant/cached/all; default: cached). For details or
finer granularity control refer to the QAPI documentation of
blockdev-add.

Example 1:

-blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
-blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216

Example 2:

-blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2

	Driver-specific options for other drivers

	Please refer to the QAPI documentation of the blockdev-add
QMP command.

	-drive option[,option[,option[,...]]]

	Define a new drive. This includes creating a block driver node (the
backend) as well as a guest device, and is mostly a shortcut for
defining the corresponding -blockdev and -device options.

-drive accepts all options that are accepted by -blockdev.
In addition, it knows the following options:

	file=file

	This option defines which disk image (see
Disk Images) to use with this drive. If
the filename contains comma, you must double it (for instance,
“file=my,,file” to use file “my,file”).

Special files such as iSCSI devices can be specified using
protocol specific URLs. See the section for “Device URL Syntax”
for more information.

	if=interface

	This option defines on which type on interface the drive is
connected. Available types are: ide, scsi, sd, mtd, floppy,
pflash, virtio, none.

	bus=bus,unit=unit

	These options define where is connected the drive by defining
the bus number and the unit id.

	index=index

	This option defines where is connected the drive by using an
index in the list of available connectors of a given interface
type.

	media=media

	This option defines the type of the media: disk or cdrom.

	snapshot=snapshot

	snapshot is “on” or “off” and controls snapshot mode for the
given drive (see -snapshot).

	cache=cache

	cache is “none”, “writeback”, “unsafe”, “directsync” or
“writethrough” and controls how the host cache is used to access
block data. This is a shortcut that sets the cache.direct
and cache.no-flush options (as in -blockdev), and
additionally cache.writeback, which provides a default for
the write-cache option of block guest devices (as in
-device). The modes correspond to the following settings:

	

	cache.writeback

	cache.direct

	cache.no-flush

	writeback

	on

	off

	off

	none

	on

	on

	off

	writethrough

	off

	off

	off

	directsync

	off

	on

	off

	unsafe

	on

	off

	on

The default mode is cache=writeback.

	aio=aio

	aio is “threads”, or “native” and selects between pthread based
disk I/O and native Linux AIO.

	format=format

	Specify which disk format will be used rather than detecting the
format. Can be used to specify format=raw to avoid interpreting
an untrusted format header.

	werror=action,rerror=action

	Specify which action to take on write and read errors. Valid
actions are: “ignore” (ignore the error and try to continue),
“stop” (pause QEMU), “report” (report the error to the guest),
“enospc” (pause QEMU only if the host disk is full; report the
error to the guest otherwise). The default setting is
werror=enospc and rerror=report.

	copy-on-read=copy-on-read

	copy-on-read is “on” or “off” and enables whether to copy read
backing file sectors into the image file.

	bps=b,bps_rd=r,bps_wr=w

	Specify bandwidth throttling limits in bytes per second, either
for all request types or for reads or writes only. Small values
can lead to timeouts or hangs inside the guest. A safe minimum
for disks is 2 MB/s.

	bps_max=bm,bps_rd_max=rm,bps_wr_max=wm

	Specify bursts in bytes per second, either for all request types
or for reads or writes only. Bursts allow the guest I/O to spike
above the limit temporarily.

	iops=i,iops_rd=r,iops_wr=w

	Specify request rate limits in requests per second, either for
all request types or for reads or writes only.

	iops_max=bm,iops_rd_max=rm,iops_wr_max=wm

	Specify bursts in requests per second, either for all request
types or for reads or writes only. Bursts allow the guest I/O to
spike above the limit temporarily.

	iops_size=is

	Let every is bytes of a request count as a new request for iops
throttling purposes. Use this option to prevent guests from
circumventing iops limits by sending fewer but larger requests.

	group=g

	Join a throttling quota group with given name g. All drives that
are members of the same group are accounted for together. Use
this option to prevent guests from circumventing throttling
limits by using many small disks instead of a single larger
disk.

By default, the cache.writeback=on mode is used. It will report
data writes as completed as soon as the data is present in the host
page cache. This is safe as long as your guest OS makes sure to
correctly flush disk caches where needed. If your guest OS does not
handle volatile disk write caches correctly and your host crashes or
loses power, then the guest may experience data corruption.

For such guests, you should consider using cache.writeback=off.
This means that the host page cache will be used to read and write
data, but write notification will be sent to the guest only after
QEMU has made sure to flush each write to the disk. Be aware that
this has a major impact on performance.

When using the -snapshot option, unsafe caching is always used.

Copy-on-read avoids accessing the same backing file sectors
repeatedly and is useful when the backing file is over a slow
network. By default copy-on-read is off.

Instead of -cdrom you can use:

qemu-system-x86_64 -drive file=file,index=2,media=cdrom

Instead of -hda, -hdb, -hdc, -hdd, you can use:

qemu-system-x86_64 -drive file=file,index=0,media=disk
qemu-system-x86_64 -drive file=file,index=1,media=disk
qemu-system-x86_64 -drive file=file,index=2,media=disk
qemu-system-x86_64 -drive file=file,index=3,media=disk

You can open an image using pre-opened file descriptors from an fd
set:

qemu-system-x86_64 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" -drive file=/dev/fdset/2,index=0,media=disk

You can connect a CDROM to the slave of ide0:

qemu_system-x86_64 -drive file=file,if=ide,index=1,media=cdrom

If you don’t specify the “file=” argument, you define an empty
drive:

qemu_system-x86_64 -drive if=ide,index=1,media=cdrom

Instead of -fda, -fdb, you can use:

qemu_system-x86_64 -drive file=file,index=0,if=floppy
qemu_system-x86_64 -drive file=file,index=1,if=floppy

By default, interface is “ide” and index is automatically
incremented:

qemu_system-x86_64 -drive file=a -drive file=b"

is interpreted like:

qemu_system-x86_64 -hda a -hdb b

	-mtdblock file

	Use file as on-board Flash memory image.

	-sd file

	Use file as SecureDigital card image.

	-pflash file

	Use file as a parallel flash image.

	-snapshot

	Write to temporary files instead of disk image files. In this case,
the raw disk image you use is not written back. You can however
force the write back by pressing C-a s (see
Disk Images).

	-fsdev local,id=id,path=path,security_model=security_model [,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode] [,throttling.option=value[,throttling.option=value[,...]]]

	

	-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly]

	

	-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]

	

	-fsdev synth,id=id[,readonly]

	Define a new file system device. Valid options are:

	local

	Accesses to the filesystem are done by QEMU.

	proxy

	Accesses to the filesystem are done by virtfs-proxy-helper(1).

	synth

	Synthetic filesystem, only used by QTests.

	id=id

	Specifies identifier for this device.

	path=path

	Specifies the export path for the file system device. Files
under this path will be available to the 9p client on the guest.

	security_model=security_model

	Specifies the security model to be used for this export path.
Supported security models are “passthrough”, “mapped-xattr”,
“mapped-file” and “none”. In “passthrough” security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In “mapped-xattr”
security model, some of the file attributes like uid, gid, mode
bits and link target are stored as file attributes. For
“mapped-file” these attributes are stored in the hidden
.virtfs_metadata directory. Directories exported by this
security model cannot interact with other unix tools. “none”
security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver.
Other fsdrivers (like proxy) don’t take security model as a
parameter.

	writeout=writeout

	This is an optional argument. The only supported value is
“immediate”. This means that host page cache will be used to
read and write data but write notification will be sent to the
guest only when the data has been reported as written by the
storage subsystem.

	readonly

	Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

	socket=socket

	Enables proxy filesystem driver to use passed socket file for
communicating with virtfs-proxy-helper(1).

	sock_fd=sock_fd

	Enables proxy filesystem driver to use passed socket descriptor
for communicating with virtfs-proxy-helper(1). Usually a helper
like libvirt will create socketpair and pass one of the fds as
sock_fd.

	fmode=fmode

	Specifies the default mode for newly created files on the host.
Works only with security models “mapped-xattr” and
“mapped-file”.

	dmode=dmode

	Specifies the default mode for newly created directories on the
host. Works only with security models “mapped-xattr” and
“mapped-file”.

	throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w

	Specify bandwidth throttling limits in bytes per second, either
for all request types or for reads or writes only.

	throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm

	Specify bursts in bytes per second, either for all request types
or for reads or writes only. Bursts allow the guest I/O to spike
above the limit temporarily.

	throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w

	Specify request rate limits in requests per second, either for
all request types or for reads or writes only.

	throttling.iops-total-max=im,throttling.iops-read-max=irm, throttling.iops-write-max=iwm

	Specify bursts in requests per second, either for all request
types or for reads or writes only. Bursts allow the guest I/O to
spike above the limit temporarily.

	throttling.iops-size=is

	Let every is bytes of a request count as a new request for iops
throttling purposes.

-fsdev option is used along with -device driver “virtio-9p-…”.

	-device virtio-9p-type,fsdev=id,mount_tag=mount_tag

	Options for virtio-9p-… driver are:

	type

	Specifies the variant to be used. Supported values are “pci”,
“ccw” or “device”, depending on the machine type.

	fsdev=id

	Specifies the id value specified along with -fsdev option.

	mount_tag=mount_tag

	Specifies the tag name to be used by the guest to mount this
export point.

	-virtfs local,path=path,mount_tag=mount_tag ,security_model=security_model[,writeout=writeout][,readonly] [,fmode=fmode][,dmode=dmode][,multidevs=multidevs]

	

	-virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly]

	

	-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly]

	

	-virtfs synth,mount_tag=mount_tag

	Define a new filesystem device and expose it to the guest using a
virtio-9p-device. The general form of a Virtual File system
pass-through options are:

	local

	Accesses to the filesystem are done by QEMU.

	proxy

	Accesses to the filesystem are done by virtfs-proxy-helper(1).

	synth

	Synthetic filesystem, only used by QTests.

	id=id

	Specifies identifier for the filesystem device

	path=path

	Specifies the export path for the file system device. Files
under this path will be available to the 9p client on the guest.

	security_model=security_model

	Specifies the security model to be used for this export path.
Supported security models are “passthrough”, “mapped-xattr”,
“mapped-file” and “none”. In “passthrough” security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In “mapped-xattr”
security model, some of the file attributes like uid, gid, mode
bits and link target are stored as file attributes. For
“mapped-file” these attributes are stored in the hidden
.virtfs_metadata directory. Directories exported by this
security model cannot interact with other unix tools. “none”
security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver.
Other fsdrivers (like proxy) don’t take security model as a
parameter.

	writeout=writeout

	This is an optional argument. The only supported value is
“immediate”. This means that host page cache will be used to
read and write data but write notification will be sent to the
guest only when the data has been reported as written by the
storage subsystem.

	readonly

	Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

	socket=socket

	Enables proxy filesystem driver to use passed socket file for
communicating with virtfs-proxy-helper(1). Usually a helper like
libvirt will create socketpair and pass one of the fds as
sock_fd.

	sock_fd

	Enables proxy filesystem driver to use passed ‘sock_fd’ as the
socket descriptor for interfacing with virtfs-proxy-helper(1).

	fmode=fmode

	Specifies the default mode for newly created files on the host.
Works only with security models “mapped-xattr” and
“mapped-file”.

	dmode=dmode

	Specifies the default mode for newly created directories on the
host. Works only with security models “mapped-xattr” and
“mapped-file”.

	mount_tag=mount_tag

	Specifies the tag name to be used by the guest to mount this
export point.

	multidevs=multidevs

	Specifies how to deal with multiple devices being shared with a
9p export. Supported behaviours are either “remap”, “forbid” or
“warn”. The latter is the default behaviour on which virtfs 9p
expects only one device to be shared with the same export, and
if more than one device is shared and accessed via the same 9p
export then only a warning message is logged (once) by qemu on
host side. In order to avoid file ID collisions on guest you
should either create a separate virtfs export for each device to
be shared with guests (recommended way) or you might use “remap”
instead which allows you to share multiple devices with only one
export instead, which is achieved by remapping the original
inode numbers from host to guest in a way that would prevent
such collisions. Remapping inodes in such use cases is required
because the original device IDs from host are never passed and
exposed on guest. Instead all files of an export shared with
virtfs always share the same device id on guest. So two files
with identical inode numbers but from actually different devices
on host would otherwise cause a file ID collision and hence
potential misbehaviours on guest. “forbid” on the other hand
assumes like “warn” that only one device is shared by the same
export, however it will not only log a warning message but also
deny access to additional devices on guest. Note though that
“forbid” does currently not block all possible file access
operations (e.g. readdir() would still return entries from other
devices).

	-iscsi

	Configure iSCSI session parameters.

USB options

	-usb

	Enable USB emulation on machine types with an on-board USB host
controller (if not enabled by default). Note that on-board USB host
controllers may not support USB 3.0. In this case
-device qemu-xhci can be used instead on machines with PCI.

	-usbdevice devname

	Add the USB device devname. Note that this option is deprecated,
please use -device usb-... instead. See
Connecting USB devices.

	mouse

	Virtual Mouse. This will override the PS/2 mouse emulation when
activated.

	tablet

	Pointer device that uses absolute coordinates (like a
touchscreen). This means QEMU is able to report the mouse
position without having to grab the mouse. Also overrides the
PS/2 mouse emulation when activated.

	braille

	Braille device. This will use BrlAPI to display the braille
output on a real or fake device.

Display options

	-display type

	Select type of display to use. This option is a replacement for the
old style -sdl/-curses/… options. Use -display help to list
the available display types. Valid values for type are

	sdl

	Display video output via SDL (usually in a separate graphics
window; see the SDL documentation for other possibilities).

	curses

	Display video output via curses. For graphics device models
which support a text mode, QEMU can display this output using a
curses/ncurses interface. Nothing is displayed when the graphics
device is in graphical mode or if the graphics device does not
support a text mode. Generally only the VGA device models
support text mode. The font charset used by the guest can be
specified with the charset option, for example
charset=CP850 for IBM CP850 encoding. The default is
CP437.

	none

	Do not display video output. The guest will still see an
emulated graphics card, but its output will not be displayed to
the QEMU user. This option differs from the -nographic option in
that it only affects what is done with video output; -nographic
also changes the destination of the serial and parallel port
data.

	gtk

	Display video output in a GTK window. This interface provides
drop-down menus and other UI elements to configure and control
the VM during runtime.

	vnc

	Start a VNC server on display <arg>

	egl-headless

	Offload all OpenGL operations to a local DRI device. For any
graphical display, this display needs to be paired with either
VNC or SPICE displays.

	spice-app

	Start QEMU as a Spice server and launch the default Spice client
application. The Spice server will redirect the serial consoles
and QEMU monitors. (Since 4.0)

	-nographic

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, you can totally disable
graphical output so that QEMU is a simple command line application.
The emulated serial port is redirected on the console and muxed with
the monitor (unless redirected elsewhere explicitly). Therefore, you
can still use QEMU to debug a Linux kernel with a serial console.
Use C-a h for help on switching between the console and monitor.

	-curses

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, QEMU can display the VGA
output when in text mode using a curses/ncurses interface. Nothing
is displayed in graphical mode.

	-alt-grab

	Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that
this also affects the special keys (for fullscreen, monitor-mode
switching, etc).

	-ctrl-grab

	Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this
also affects the special keys (for fullscreen, monitor-mode
switching, etc).

	-no-quit

	Disable SDL window close capability.

	-sdl

	Enable SDL.

	-spice option[,option[,...]]

	Enable the spice remote desktop protocol. Valid options are

	port=<nr>

	Set the TCP port spice is listening on for plaintext channels.

	addr=<addr>

	Set the IP address spice is listening on. Default is any
address.

	ipv4; ipv6; unix

	Force using the specified IP version.

	password=<secret>

	Set the password you need to authenticate.

	sasl

	Require that the client use SASL to authenticate with the spice.
The exact choice of authentication method used is controlled
from the system / user’s SASL configuration file for the ‘qemu’
service. This is typically found in /etc/sasl2/qemu.conf. If
running QEMU as an unprivileged user, an environment variable
SASL_CONF_PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods
can also provide data encryption (eg GSSAPI), it is recommended
that SASL always be combined with the ‘tls’ and ‘x509’ settings
to enable use of SSL and server certificates. This ensures a
data encryption preventing compromise of authentication
credentials.

	disable-ticketing

	Allow client connects without authentication.

	disable-copy-paste

	Disable copy paste between the client and the guest.

	disable-agent-file-xfer

	Disable spice-vdagent based file-xfer between the client and the
guest.

	tls-port=<nr>

	Set the TCP port spice is listening on for encrypted channels.

	x509-dir=<dir>

	Set the x509 file directory. Expects same filenames as -vnc
$display,x509=$dir

	x509-key-file=<file>; x509-key-password=<file>; x509-cert-file=<file>; x509-cacert-file=<file>; x509-dh-key-file=<file>

	The x509 file names can also be configured individually.

	tls-ciphers=<list>

	Specify which ciphers to use.

	tls-channel=[main|display|cursor|inputs|record|playback]; plaintext-channel=[main|display|cursor|inputs|record|playback]

	Force specific channel to be used with or without TLS
encryption. The options can be specified multiple times to
configure multiple channels. The special name “default” can be
used to set the default mode. For channels which are not
explicitly forced into one mode the spice client is allowed to
pick tls/plaintext as he pleases.

	image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

	Configure image compression (lossless). Default is auto_glz.

	jpeg-wan-compression=[auto|never|always]; zlib-glz-wan-compression=[auto|never|always]

	Configure wan image compression (lossy for slow links). Default
is auto.

	streaming-video=[off|all|filter]

	Configure video stream detection. Default is off.

	agent-mouse=[on|off]

	Enable/disable passing mouse events via vdagent. Default is on.

	playback-compression=[on|off]

	Enable/disable audio stream compression (using celt 0.5.1).
Default is on.

	seamless-migration=[on|off]

	Enable/disable spice seamless migration. Default is off.

	gl=[on|off]

	Enable/disable OpenGL context. Default is off.

	rendernode=<file>

	DRM render node for OpenGL rendering. If not specified, it will
pick the first available. (Since 2.9)

	-portrait

	Rotate graphical output 90 deg left (only PXA LCD).

	-rotate deg

	Rotate graphical output some deg left (only PXA LCD).

	-vga type

	Select type of VGA card to emulate. Valid values for type are

	cirrus

	Cirrus Logic GD5446 Video card. All Windows versions starting
from Windows 95 should recognize and use this graphic card. For
optimal performances, use 16 bit color depth in the guest and
the host OS. (This card was the default before QEMU 2.2)

	std

	Standard VGA card with Bochs VBE extensions. If your guest OS
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
you want to use high resolution modes (>= 1280x1024x16) then you
should use this option. (This card is the default since QEMU
2.2)

	vmware

	VMWare SVGA-II compatible adapter. Use it if you have
sufficiently recent XFree86/XOrg server or Windows guest with a
driver for this card.

	qxl

	QXL paravirtual graphic card. It is VGA compatible (including
VESA 2.0 VBE support). Works best with qxl guest drivers
installed though. Recommended choice when using the spice
protocol.

	tcx

	(sun4m only) Sun TCX framebuffer. This is the default
framebuffer for sun4m machines and offers both 8-bit and 24-bit
colour depths at a fixed resolution of 1024x768.

	cg3

	(sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
framebuffer for sun4m machines available in both 1024x768
(OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
wishing to run older Solaris versions.

	virtio

	Virtio VGA card.

	none

	Disable VGA card.

	-full-screen

	Start in full screen.

	-g widthxheight[xdepth]

	Set the initial graphical resolution and depth (PPC, SPARC only).

For PPC the default is 800x600x32.

For SPARC with the TCX graphics device, the default is 1024x768x8
with the option of 1024x768x24. For cgthree, the default is
1024x768x8 with the option of 1152x900x8 for people who wish to use
OBP.

	-vnc display[,option[,option[,...]]]

	Normally, if QEMU is compiled with graphical window support, it
displays output such as guest graphics, guest console, and the QEMU
monitor in a window. With this option, you can have QEMU listen on
VNC display display and redirect the VGA display over the VNC
session. It is very useful to enable the usb tablet device when
using this option (option -device usb-tablet). When using the
VNC display, you must use the -k parameter to set the keyboard
layout if you are not using en-us. Valid syntax for the display is

	to=L

	With this option, QEMU will try next available VNC displays,
until the number L, if the origianlly defined “-vnc display” is
not available, e.g. port 5900+display is already used by another
application. By default, to=0.

	host:d

	TCP connections will only be allowed from host on display d. By
convention the TCP port is 5900+d. Optionally, host can be
omitted in which case the server will accept connections from
any host.

	unix:path

	Connections will be allowed over UNIX domain sockets where path
is the location of a unix socket to listen for connections on.

	none

	VNC is initialized but not started. The monitor change
command can be used to later start the VNC server.

Following the display value there may be one or more option flags
separated by commas. Valid options are

	reverse

	Connect to a listening VNC client via a “reverse” connection.
The client is specified by the display. For reverse network
connections (host:d,``reverse``), the d argument is a TCP port
number, not a display number.

	websocket

	Opens an additional TCP listening port dedicated to VNC
Websocket connections. If a bare websocket option is given, the
Websocket port is 5700+display. An alternative port can be
specified with the syntax websocket=port.

If host is specified connections will only be allowed from this
host. It is possible to control the websocket listen address
independently, using the syntax websocket=host:port.

If no TLS credentials are provided, the websocket connection
runs in unencrypted mode. If TLS credentials are provided, the
websocket connection requires encrypted client connections.

	password

	Require that password based authentication is used for client
connections.

The password must be set separately using the set_password
command in the QEMU Monitor. The
syntax to change your password is:
set_password <protocol> <password> where <protocol> could be
either “vnc” or “spice”.

If you would like to change <protocol> password expiration, you
should use expire_password <protocol> <expiration-time>
where expiration time could be one of the following options:
now, never, +seconds or UNIX time of expiration, e.g. +60 to
make password expire in 60 seconds, or 1335196800 to make
password expire on “Mon Apr 23 12:00:00 EDT 2012” (UNIX time for
this date and time).

You can also use keywords “now” or “never” for the expiration
time to allow <protocol> password to expire immediately or never
expire.

	tls-creds=ID

	Provides the ID of a set of TLS credentials to use to secure the
VNC server. They will apply to both the normal VNC server socket
and the websocket socket (if enabled). Setting TLS credentials
will cause the VNC server socket to enable the VeNCrypt auth
mechanism. The credentials should have been previously created
using the -object tls-creds argument.

	tls-authz=ID

	Provides the ID of the QAuthZ authorization object against which
the client’s x509 distinguished name will validated. This object
is only resolved at time of use, so can be deleted and recreated
on the fly while the VNC server is active. If missing, it will
default to denying access.

	sasl

	Require that the client use SASL to authenticate with the VNC
server. The exact choice of authentication method used is
controlled from the system / user’s SASL configuration file for
the ‘qemu’ service. This is typically found in
/etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
an environment variable SASL_CONF_PATH can be used to make it
search alternate locations for the service config. While some
SASL auth methods can also provide data encryption (eg GSSAPI),
it is recommended that SASL always be combined with the ‘tls’
and ‘x509’ settings to enable use of SSL and server
certificates. This ensures a data encryption preventing
compromise of authentication credentials. See the
VNC security section for details on
using SASL authentication.

	sasl-authz=ID

	Provides the ID of the QAuthZ authorization object against which
the client’s SASL username will validated. This object is only
resolved at time of use, so can be deleted and recreated on the
fly while the VNC server is active. If missing, it will default
to denying access.

	acl

	Legacy method for enabling authorization of clients against the
x509 distinguished name and SASL username. It results in the
creation of two authz-list objects with IDs of
vnc.username and vnc.x509dname. The rules for these
objects must be configured with the HMP ACL commands.

This option is deprecated and should no longer be used. The new
sasl-authz and tls-authz options are a replacement.

	lossy

	Enable lossy compression methods (gradient, JPEG, …). If this
option is set, VNC client may receive lossy framebuffer updates
depending on its encoding settings. Enabling this option can
save a lot of bandwidth at the expense of quality.

	non-adaptive

	Disable adaptive encodings. Adaptive encodings are enabled by
default. An adaptive encoding will try to detect frequently
updated screen regions, and send updates in these regions using
a lossy encoding (like JPEG). This can be really helpful to save
bandwidth when playing videos. Disabling adaptive encodings
restores the original static behavior of encodings like Tight.

	share=[allow-exclusive|force-shared|ignore]

	Set display sharing policy. ‘allow-exclusive’ allows clients to
ask for exclusive access. As suggested by the rfb spec this is
implemented by dropping other connections. Connecting multiple
clients in parallel requires all clients asking for a shared
session (vncviewer: -shared switch). This is the default.
‘force-shared’ disables exclusive client access. Useful for
shared desktop sessions, where you don’t want someone forgetting
specify -shared disconnect everybody else. ‘ignore’ completely
ignores the shared flag and allows everybody connect
unconditionally. Doesn’t conform to the rfb spec but is
traditional QEMU behavior.

	key-delay-ms

	Set keyboard delay, for key down and key up events, in
milliseconds. Default is 10. Keyboards are low-bandwidth
devices, so this slowdown can help the device and guest to keep
up and not lose events in case events are arriving in bulk.
Possible causes for the latter are flaky network connections, or
scripts for automated testing.

	audiodev=audiodev

	Use the specified audiodev when the VNC client requests audio
transmission. When not using an -audiodev argument, this option
must be omitted, otherwise is must be present and specify a
valid audiodev.

i386 target only

	-win2k-hack

	Use it when installing Windows 2000 to avoid a disk full bug. After
Windows 2000 is installed, you no longer need this option (this
option slows down the IDE transfers).

	-no-fd-bootchk

	Disable boot signature checking for floppy disks in BIOS. May be
needed to boot from old floppy disks.

	-no-acpi

	Disable ACPI (Advanced Configuration and Power Interface) support.
Use it if your guest OS complains about ACPI problems (PC target
machine only).

	-no-hpet

	Disable HPET support.

	-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n] [,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

	Add ACPI table with specified header fields and context from
specified files. For file=, take whole ACPI table from the specified
files, including all ACPI headers (possible overridden by other
options). For data=, only data portion of the table is used, all
header information is specified in the command line. If a SLIC table
is supplied to QEMU, then the SLIC’s oem_id and oem_table_id
fields will override the same in the RSDT and the FADT (a.k.a.
FACP), in order to ensure the field matches required by the
Microsoft SLIC spec and the ACPI spec.

	-smbios file=binary

	Load SMBIOS entry from binary file.

	-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]

	Specify SMBIOS type 0 fields

	-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

	Specify SMBIOS type 1 fields

	-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]

	Specify SMBIOS type 2 fields

	-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]

	Specify SMBIOS type 3 fields

	-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]

	Specify SMBIOS type 4 fields

	-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

	Specify SMBIOS type 17 fields

Network options

	-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]

	This option is a shortcut for configuring both the on-board
(default) guest NIC hardware and the host network backend in one go.
The host backend options are the same as with the corresponding
-netdev options below. The guest NIC model can be set with
model=modelname. Use model=help to list the available device
types. The hardware MAC address can be set with mac=macaddr.

The following two example do exactly the same, to show how -nic
can be used to shorten the command line length:

qemu-system-x86_64 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
qemu-system-x86_64 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32

	-nic none

	Indicate that no network devices should be configured. It is used to
override the default configuration (default NIC with “user” host
network backend) which is activated if no other networking options
are provided.

	-netdev user,id=id[,option][,option][,...]

	Configure user mode host network backend which requires no
administrator privilege to run. Valid options are:

	id=id

	Assign symbolic name for use in monitor commands.

	ipv4=on|off and ipv6=on|off

	Specify that either IPv4 or IPv6 must be enabled. If neither is
specified both protocols are enabled.

	net=addr[/mask]

	Set IP network address the guest will see. Optionally specify
the netmask, either in the form a.b.c.d or as number of valid
top-most bits. Default is 10.0.2.0/24.

	host=addr

	Specify the guest-visible address of the host. Default is the
2nd IP in the guest network, i.e. x.x.x.2.

	ipv6-net=addr[/int]

	Set IPv6 network address the guest will see (default is
fec0::/64). The network prefix is given in the usual hexadecimal
IPv6 address notation. The prefix size is optional, and is given
as the number of valid top-most bits (default is 64).

	ipv6-host=addr

	Specify the guest-visible IPv6 address of the host. Default is
the 2nd IPv6 in the guest network, i.e. xxxx::2.

	restrict=on|off

	If this option is enabled, the guest will be isolated, i.e. it
will not be able to contact the host and no guest IP packets
will be routed over the host to the outside. This option does
not affect any explicitly set forwarding rules.

	hostname=name

	Specifies the client hostname reported by the built-in DHCP
server.

	dhcpstart=addr

	Specify the first of the 16 IPs the built-in DHCP server can
assign. Default is the 15th to 31st IP in the guest network,
i.e. x.x.x.15 to x.x.x.31.

	dns=addr

	Specify the guest-visible address of the virtual nameserver. The
address must be different from the host address. Default is the
3rd IP in the guest network, i.e. x.x.x.3.

	ipv6-dns=addr

	Specify the guest-visible address of the IPv6 virtual
nameserver. The address must be different from the host address.
Default is the 3rd IP in the guest network, i.e. xxxx::3.

	dnssearch=domain

	Provides an entry for the domain-search list sent by the
built-in DHCP server. More than one domain suffix can be
transmitted by specifying this option multiple times. If
supported, this will cause the guest to automatically try to
append the given domain suffix(es) in case a domain name can not
be resolved.

Example:

qemu-system-x86_64 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org

	domainname=domain

	Specifies the client domain name reported by the built-in DHCP
server.

	tftp=dir

	When using the user mode network stack, activate a built-in TFTP
server. The files in dir will be exposed as the root of a TFTP
server. The TFTP client on the guest must be configured in
binary mode (use the command bin of the Unix TFTP client).

	tftp-server-name=name

	In BOOTP reply, broadcast name as the “TFTP server name”
(RFC2132 option 66). This can be used to advise the guest to
load boot files or configurations from a different server than
the host address.

	bootfile=file

	When using the user mode network stack, broadcast file as the
BOOTP filename. In conjunction with tftp, this can be used
to network boot a guest from a local directory.

Example (using pxelinux):

qemu-system-x86_64 -hda linux.img -boot n -device e1000,netdev=n1 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

	smb=dir[,smbserver=addr]

	When using the user mode network stack, activate a built-in SMB
server so that Windows OSes can access to the host files in
dir transparently. The IP address of the SMB server can be
set to addr. By default the 4th IP in the guest network is used,
i.e. x.x.x.4.

In the guest Windows OS, the line:

10.0.2.4 smbserver

must be added in the file C:\WINDOWS\LMHOSTS (for windows
9x/Me) or C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows
NT/2000).

Then dir can be accessed in \\smbserver\qemu.

Note that a SAMBA server must be installed on the host OS.

	hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

	Redirect incoming TCP or UDP connections to the host port
hostport to the guest IP address guestaddr on guest port
guestport. If guestaddr is not specified, its value is x.x.x.15
(default first address given by the built-in DHCP server). By
specifying hostaddr, the rule can be bound to a specific host
interface. If no connection type is set, TCP is used. This
option can be given multiple times.

For example, to redirect host X11 connection from screen 1 to
guest screen 0, use the following:

on the host
qemu-system-x86_64 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
this host xterm should open in the guest X11 server
xterm -display :1

To redirect telnet connections from host port 5555 to telnet
port on the guest, use the following:

on the host
qemu-system-x86_64 -nic user,hostfwd=tcp::5555-:23
telnet localhost 5555

Then when you use on the host telnet localhost 5555, you
connect to the guest telnet server.

	guestfwd=[tcp]:server:port-dev; guestfwd=[tcp]:server:port-cmd:command

	Forward guest TCP connections to the IP address server on port
port to the character device dev or to a program executed by
cmd:command which gets spawned for each connection. This option
can be given multiple times.

You can either use a chardev directly and have that one used
throughout QEMU’s lifetime, like in the following example:

open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
the guest accesses it
qemu-system-x86_64 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321

Or you can execute a command on every TCP connection established
by the guest, so that QEMU behaves similar to an inetd process
for that virtual server:

call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
and connect the TCP stream to its stdin/stdout
qemu-system-x86_64 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'

	-netdev tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]

	Configure a host TAP network backend with ID id.

Use the network script file to configure it and the network script
dfile to deconfigure it. If name is not provided, the OS
automatically provides one. The default network configure script is
/etc/qemu-ifup and the default network deconfigure script is
/etc/qemu-ifdown. Use script=no or downscript=no to
disable script execution.

If running QEMU as an unprivileged user, use the network helper
helper to configure the TAP interface and attach it to the bridge.
The default network helper executable is
/path/to/qemu-bridge-helper and the default bridge device is
br0.

fd=h can be used to specify the handle of an already opened
host TAP interface.

Examples:

#launch a QEMU instance with the default network script
qemu-system-x86_64 linux.img -nic tap

#launch a QEMU instance with two NICs, each one connected
#to a TAP device
qemu-system-x86_64 linux.img -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-x86_64 linux.img -device virtio-net-pci,netdev=n1 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"

	-netdev bridge,id=id[,br=bridge][,helper=helper]

	Connect a host TAP network interface to a host bridge device.

Use the network helper helper to configure the TAP interface and
attach it to the bridge. The default network helper executable is
/path/to/qemu-bridge-helper and the default bridge device is
br0.

Examples:

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-x86_64 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge qemubr0
qemu-system-x86_64 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1

	-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]

	This host network backend can be used to connect the guest’s network
to another QEMU virtual machine using a TCP socket connection. If
listen is specified, QEMU waits for incoming connections on port
(host is optional). connect is used to connect to another QEMU
instance using the listen option. fd=h specifies an
already opened TCP socket.

Example:

launch a first QEMU instance
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,listen=:1234
connect the network of this instance to the network of the first instance
qemu-system-x86_64 linux.img -device e1000,netdev=n2,mac=52:54:00:12:34:57 -netdev socket,id=n2,connect=127.0.0.1:1234

	-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]

	Configure a socket host network backend to share the guest’s network
traffic with another QEMU virtual machines using a UDP multicast
socket, effectively making a bus for every QEMU with same multicast
address maddr and port. NOTES:

	Several QEMU can be running on different hosts and share same bus
(assuming correct multicast setup for these hosts).

	mcast support is compatible with User Mode Linux (argument
ethN=mcast), see http://user-mode-linux.sf.net.

	Use fd=h to specify an already opened UDP multicast socket.

Example:

launch one QEMU instance
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=230.0.0.1:1234
launch another QEMU instance on same "bus"
qemu-system-x86_64 linux.img -device e1000,netdev=n2,mac=52:54:00:12:34:57 -netdev socket,id=n2,mcast=230.0.0.1:1234
launch yet another QEMU instance on same "bus"
qemu-system-x86_64 linux.img -device e1000,netdev=n3,mac=52:54:00:12:34:58 -netdev socket,id=n3,mcast=230.0.0.1:1234

Example (User Mode Linux compat.):

launch QEMU instance (note mcast address selected is UML's default)
qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=239.192.168.1:1102
launch UML
/path/to/linux ubd0=/path/to/root_fs eth0=mcast

Example (send packets from host’s 1.2.3.4):

qemu-system-x86_64 linux.img -device e1000,netdev=n1,mac=52:54:00:12:34:56 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

	-netdev l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

	Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391)
is a popular protocol to transport Ethernet (and other Layer 2) data
frames between two systems. It is present in routers, firewalls and
the Linux kernel (from version 3.3 onwards).

This transport allows a VM to communicate to another VM, router or
firewall directly.

	src=srcaddr

	source address (mandatory)

	dst=dstaddr

	destination address (mandatory)

	udp

	select udp encapsulation (default is ip).

	srcport=srcport

	source udp port.

	dstport=dstport

	destination udp port.

	ipv6

	force v6, otherwise defaults to v4.

	rxcookie=rxcookie; txcookie=txcookie

	Cookies are a weak form of security in the l2tpv3 specification.
Their function is mostly to prevent misconfiguration. By default
they are 32 bit.

	cookie64

	Set cookie size to 64 bit instead of the default 32

	counter=off

	Force a ‘cut-down’ L2TPv3 with no counter as in
draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00

	pincounter=on

	Work around broken counter handling in peer. This may also help
on networks which have packet reorder.

	offset=offset

	Add an extra offset between header and data

For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to
the bridge br-lan on the remote Linux host 1.2.3.4:

Setup tunnel on linux host using raw ip as encapsulation
on 1.2.3.4
ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 encap udp udp_sport 16384 udp_dport 16384
ip l2tp add session tunnel_id 1 name vmtunnel0 session_id 0xFFFFFFFF peer_session_id 0xFFFFFFFF
ifconfig vmtunnel0 mtu 1500
ifconfig vmtunnel0 up
brctl addif br-lan vmtunnel0

on 4.3.2.1
launch QEMU instance - if your network has reorder or is very lossy add ,pincounter

qemu-system-x86_64 linux.img -device e1000,netdev=n1 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter

	-netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]

	Configure VDE backend to connect to PORT n of a vde switch running
on host and listening for incoming connections on socketpath. Use
GROUP groupname and MODE octalmode to change default ownership and
permissions for communication port. This option is only available if
QEMU has been compiled with vde support enabled.

Example:

launch vde switch
vde_switch -F -sock /tmp/myswitch
launch QEMU instance
qemu-system-x86_64 linux.img -nic vde,sock=/tmp/myswitch

	-netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]

	Establish a vhost-user netdev, backed by a chardev id. The chardev
should be a unix domain socket backed one. The vhost-user uses a
specifically defined protocol to pass vhost ioctl replacement
messages to an application on the other end of the socket. On
non-MSIX guests, the feature can be forced with vhostforce. Use
‘queues=n’ to specify the number of queues to be created for
multiqueue vhost-user.

Example:

qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
 -numa node,memdev=mem \
 -chardev socket,id=chr0,path=/path/to/socket \
 -netdev type=vhost-user,id=net0,chardev=chr0 \
 -device virtio-net-pci,netdev=net0

	-netdev hubport,id=id,hubid=hubid[,netdev=nd]

	Create a hub port on the emulated hub with ID hubid.

The hubport netdev lets you connect a NIC to a QEMU emulated hub
instead of a single netdev. Alternatively, you can also connect the
hubport to another netdev with ID nd by using the netdev=nd
option.

	-net nic[,netdev=nd][,macaddr=mac][,model=type] [,name=name][,addr=addr][,vectors=v]

	Legacy option to configure or create an on-board (or machine
default) Network Interface Card(NIC) and connect it either to the
emulated hub with ID 0 (i.e. the default hub), or to the netdev nd.
If model is omitted, then the default NIC model associated with the
machine type is used. Note that the default NIC model may change in
future QEMU releases, so it is highly recommended to always specify
a model. Optionally, the MAC address can be changed to mac, the
device address set to addr (PCI cards only), and a name can be
assigned for use in monitor commands. Optionally, for PCI cards, you
can specify the number v of MSI-X vectors that the card should have;
this option currently only affects virtio cards; set v = 0 to
disable MSI-X. If no -net option is specified, a single NIC is
created. QEMU can emulate several different models of network card.
Use -net nic,model=help for a list of available devices for your
target.

	-net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]

	Configure a host network backend (with the options corresponding to
the same -netdev option) and connect it to the emulated hub 0
(the default hub). Use name to specify the name of the hub port.

Character device options

The general form of a character device option is:

	-chardev backend,id=id[,mux=on|off][,options]

	Backend is one of: null, socket, udp, msmouse,
vc, ringbuf, file, pipe, console, serial,
pty, stdio, braille, tty, parallel, parport,
spicevmc, spiceport. The specific backend will determine the
applicable options.

Use -chardev help to print all available chardev backend types.

All devices must have an id, which can be any string up to 127
characters long. It is used to uniquely identify this device in
other command line directives.

A character device may be used in multiplexing mode by multiple
front-ends. Specify mux=on to enable this mode. A multiplexer is
a “1:N” device, and here the “1” end is your specified chardev
backend, and the “N” end is the various parts of QEMU that can talk
to a chardev. If you create a chardev with id=myid and
mux=on, QEMU will create a multiplexer with your specified ID,
and you can then configure multiple front ends to use that chardev
ID for their input/output. Up to four different front ends can be
connected to a single multiplexed chardev. (Without multiplexing
enabled, a chardev can only be used by a single front end.) For
instance you could use this to allow a single stdio chardev to be
used by two serial ports and the QEMU monitor:

-chardev stdio,mux=on,id=char0 \
-mon chardev=char0,mode=readline \
-serial chardev:char0 \
-serial chardev:char0

You can have more than one multiplexer in a system configuration;
for instance you could have a TCP port multiplexed between UART 0
and UART 1, and stdio multiplexed between the QEMU monitor and a
parallel port:

-chardev stdio,mux=on,id=char0 \
-mon chardev=char0,mode=readline \
-parallel chardev:char0 \
-chardev tcp,...,mux=on,id=char1 \
-serial chardev:char1 \
-serial chardev:char1

When you’re using a multiplexed character device, some escape
sequences are interpreted in the input. See Keys in the character backend multiplexer.

Note that some other command line options may implicitly create
multiplexed character backends; for instance -serial mon:stdio
creates a multiplexed stdio backend connected to the serial port and
the QEMU monitor, and -nographic also multiplexes the console
and the monitor to stdio.

There is currently no support for multiplexing in the other
direction (where a single QEMU front end takes input and output from
multiple chardevs).

Every backend supports the logfile option, which supplies the
path to a file to record all data transmitted via the backend. The
logappend option controls whether the log file will be truncated
or appended to when opened.

The available backends are:

	-chardev null,id=id

	A void device. This device will not emit any data, and will drop any
data it receives. The null backend does not take any options.

	-chardev socket,id=id[,TCP options or unix options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]

	Create a two-way stream socket, which can be either a TCP or a unix
socket. A unix socket will be created if path is specified.
Behaviour is undefined if TCP options are specified for a unix
socket.

server specifies that the socket shall be a listening socket.

nowait specifies that QEMU should not block waiting for a client
to connect to a listening socket.

telnet specifies that traffic on the socket should interpret
telnet escape sequences.

websocket specifies that the socket uses WebSocket protocol for
communication.

reconnect sets the timeout for reconnecting on non-server
sockets when the remote end goes away. qemu will delay this many
seconds and then attempt to reconnect. Zero disables reconnecting,
and is the default.

tls-creds requests enablement of the TLS protocol for
encryption, and specifies the id of the TLS credentials to use for
the handshake. The credentials must be previously created with the
-object tls-creds argument.

tls-auth provides the ID of the QAuthZ authorization object
against which the client’s x509 distinguished name will be
validated. This object is only resolved at time of use, so can be
deleted and recreated on the fly while the chardev server is active.
If missing, it will default to denying access.

TCP and unix socket options are given below:

	TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]

	host for a listening socket specifies the local address to
be bound. For a connecting socket species the remote host to
connect to. host is optional for listening sockets. If not
specified it defaults to 0.0.0.0.

port for a listening socket specifies the local port to be
bound. For a connecting socket specifies the port on the remote
host to connect to. port can be given as either a port
number or a service name. port is required.

to is only relevant to listening sockets. If it is
specified, and port cannot be bound, QEMU will attempt to
bind to subsequent ports up to and including to until it
succeeds. to must be specified as a port number.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be
used. If neither is specified the socket may use either
protocol.

nodelay disables the Nagle algorithm.

	unix options: path=path

	path specifies the local path of the unix socket. path
is required.

	-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]

	Sends all traffic from the guest to a remote host over UDP.

host specifies the remote host to connect to. If not specified
it defaults to localhost.

port specifies the port on the remote host to connect to.
port is required.

localaddr specifies the local address to bind to. If not
specified it defaults to 0.0.0.0.

localport specifies the local port to bind to. If not specified
any available local port will be used.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used.
If neither is specified the device may use either protocol.

	-chardev msmouse,id=id

	Forward QEMU’s emulated msmouse events to the guest. msmouse
does not take any options.

	-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]

	Connect to a QEMU text console. vc may optionally be given a
specific size.

width and height specify the width and height respectively
of the console, in pixels.

cols and rows specify that the console be sized to fit a
text console with the given dimensions.

	-chardev ringbuf,id=id[,size=size]

	Create a ring buffer with fixed size size. size must be a power
of two and defaults to 64K.

	-chardev file,id=id,path=path

	Log all traffic received from the guest to a file.

path specifies the path of the file to be opened. This file will
be created if it does not already exist, and overwritten if it does.
path is required.

	-chardev pipe,id=id,path=path

	Create a two-way connection to the guest. The behaviour differs
slightly between Windows hosts and other hosts:

On Windows, a single duplex pipe will be created at
\\.pipe\path.

On other hosts, 2 pipes will be created called path.in and
path.out. Data written to path.in will be received by the
guest. Data written by the guest can be read from path.out. QEMU
will not create these fifos, and requires them to be present.

path forms part of the pipe path as described above. path is
required.

	-chardev console,id=id

	Send traffic from the guest to QEMU’s standard output. console
does not take any options.

console is only available on Windows hosts.

	-chardev serial,id=id,path=path

	Send traffic from the guest to a serial device on the host.

On Unix hosts serial will actually accept any tty device, not only
serial lines.

path specifies the name of the serial device to open.

	-chardev pty,id=id

	Create a new pseudo-terminal on the host and connect to it. pty
does not take any options.

pty is not available on Windows hosts.

	-chardev stdio,id=id[,signal=on|off]

	Connect to standard input and standard output of the QEMU process.

signal controls if signals are enabled on the terminal, that
includes exiting QEMU with the key sequence Control-c. This option
is enabled by default, use signal=off to disable it.

	-chardev braille,id=id

	Connect to a local BrlAPI server. braille does not take any
options.

	-chardev tty,id=id,path=path

	tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD
and DragonFlyBSD hosts. It is an alias for serial.

path specifies the path to the tty. path is required.

	-chardev parallel,id=id,path=path

	

	-chardev parport,id=id,path=path

	parallel is only available on Linux, FreeBSD and DragonFlyBSD
hosts.

Connect to a local parallel port.

path specifies the path to the parallel port device. path is
required.

	-chardev spicevmc,id=id,debug=debug,name=name

	spicevmc is only available when spice support is built in.

debug debug level for spicevmc

name name of spice channel to connect to

Connect to a spice virtual machine channel, such as vdiport.

	-chardev spiceport,id=id,debug=debug,name=name

	spiceport is only available when spice support is built in.

debug debug level for spicevmc

name name of spice port to connect to

Connect to a spice port, allowing a Spice client to handle the
traffic identified by a name (preferably a fqdn).

TPM device options

The general form of a TPM device option is:

	-tpmdev backend,id=id[,options]

	The specific backend type will determine the applicable options. The
-tpmdev option creates the TPM backend and requires a
-device option that specifies the TPM frontend interface model.

Use -tpmdev help to print all available TPM backend types.

The available backends are:

	-tpmdev passthrough,id=id,path=path,cancel-path=cancel-path

	(Linux-host only) Enable access to the host’s TPM using the
passthrough driver.

path specifies the path to the host’s TPM device, i.e., on a
Linux host this would be /dev/tpm0. path is optional and by
default /dev/tpm0 is used.

cancel-path specifies the path to the host TPM device’s sysfs
entry allowing for cancellation of an ongoing TPM command.
cancel-path is optional and by default QEMU will search for the
sysfs entry to use.

Some notes about using the host’s TPM with the passthrough driver:

The TPM device accessed by the passthrough driver must not be used
by any other application on the host.

Since the host’s firmware (BIOS/UEFI) has already initialized the
TPM, the VM’s firmware (BIOS/UEFI) will not be able to initialize
the TPM again and may therefore not show a TPM-specific menu that
would otherwise allow the user to configure the TPM, e.g., allow the
user to enable/disable or activate/deactivate the TPM. Further, if
TPM ownership is released from within a VM then the host’s TPM will
get disabled and deactivated. To enable and activate the TPM again
afterwards, the host has to be rebooted and the user is required to
enter the firmware’s menu to enable and activate the TPM. If the TPM
is left disabled and/or deactivated most TPM commands will fail.

To create a passthrough TPM use the following two options:

-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0

Note that the -tpmdev id is tpm0 and is referenced by
tpmdev=tpm0 in the device option.

	-tpmdev emulator,id=id,chardev=dev

	(Linux-host only) Enable access to a TPM emulator using Unix domain
socket based chardev backend.

chardev specifies the unique ID of a character device backend
that provides connection to the software TPM server.

To create a TPM emulator backend device with chardev socket backend:

-chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0

Linux/Multiboot boot specific

When using these options, you can use a given Linux or Multiboot kernel
without installing it in the disk image. It can be useful for easier
testing of various kernels.

	-kernel bzImage

	Use bzImage as kernel image. The kernel can be either a Linux kernel
or in multiboot format.

	-append cmdline

	Use cmdline as kernel command line

	-initrd file

	Use file as initial ram disk.

	-initrd "file1 arg=foo,file2"

	This syntax is only available with multiboot.

Use file1 and file2 as modules and pass arg=foo as parameter to the
first module.

	-dtb file

	Use file as a device tree binary (dtb) image and pass it to the
kernel on boot.

Debug/Expert options

	-fw_cfg [name=]name,file=file

	Add named fw_cfg entry with contents from file file.

	-fw_cfg [name=]name,string=str

	Add named fw_cfg entry with contents from string str.

The terminating NUL character of the contents of str will not be
included as part of the fw_cfg item data. To insert contents with
embedded NUL characters, you have to use the file parameter.

The fw_cfg entries are passed by QEMU through to the guest.

Example:

-fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin

creates an fw_cfg entry named opt/com.mycompany/blob with contents
from ./my_blob.bin.

	-serial dev

	Redirect the virtual serial port to host character device dev. The
default device is vc in graphical mode and stdio in non
graphical mode.

This option can be used several times to simulate up to 4 serial
ports.

Use -serial none to disable all serial ports.

Available character devices are:

	vc[:WxH]

	Virtual console. Optionally, a width and height can be given in
pixel with

vc:800x600

It is also possible to specify width or height in characters:

vc:80Cx24C

	pty

	[Linux only] Pseudo TTY (a new PTY is automatically allocated)

	none

	No device is allocated.

	null

	void device

	chardev:id

	Use a named character device defined with the -chardev
option.

	/dev/XXX

	[Linux only] Use host tty, e.g. /dev/ttyS0. The host serial
port parameters are set according to the emulated ones.

	/dev/parportN

	[Linux only, parallel port only] Use host parallel port N.
Currently SPP and EPP parallel port features can be used.

	file:filename

	Write output to filename. No character can be read.

	stdio

	[Unix only] standard input/output

	pipe:filename

	name pipe filename

	COMn

	[Windows only] Use host serial port n

	udp:[remote_host]:remote_port[@[src_ip]:src_port]

	This implements UDP Net Console. When remote_host or src_ip
are not specified they default to 0.0.0.0. When not using a
specified src_port a random port is automatically chosen.

If you just want a simple readonly console you can use
netcat or nc, by starting QEMU with:
-serial udp::4555 and nc as: nc -u -l -p 4555. Any time
QEMU writes something to that port it will appear in the
netconsole session.

If you plan to send characters back via netconsole or you want
to stop and start QEMU a lot of times, you should have QEMU use
the same source port each time by using something like -serial
udp::4555@:4556 to QEMU. Another approach is to use a patched
version of netcat which can listen to a TCP port and send and
receive characters via udp. If you have a patched version of
netcat which activates telnet remote echo and single char
transfer, then you can use the following options to set up a
netcat redirector to allow telnet on port 5555 to access the
QEMU port.

	QEMU Options:

	-serial udp::4555@:4556

	netcat options:

	-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T

	telnet options:

	localhost 5555

	tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]

	The TCP Net Console has two modes of operation. It can send the
serial I/O to a location or wait for a connection from a
location. By default the TCP Net Console is sent to host at the
port. If you use the server option QEMU will wait for a client
socket application to connect to the port before continuing,
unless the nowait option was specified. The nodelay
option disables the Nagle buffering algorithm. The reconnect
option only applies if noserver is set, if the connection goes
down it will attempt to reconnect at the given interval. If host
is omitted, 0.0.0.0 is assumed. Only one TCP connection at a
time is accepted. You can use telnet to connect to the
corresponding character device.

	Example to send tcp console to 192.168.0.2 port 4444

	-serial tcp:192.168.0.2:4444

	Example to listen and wait on port 4444 for connection

	-serial tcp::4444,server

	Example to not wait and listen on ip 192.168.0.100 port 4444

	-serial tcp:192.168.0.100:4444,server,nowait

	telnet:host:port[,server][,nowait][,nodelay]

	The telnet protocol is used instead of raw tcp sockets. The
options work the same as if you had specified -serial tcp.
The difference is that the port acts like a telnet server or
client using telnet option negotiation. This will also allow you
to send the MAGIC_SYSRQ sequence if you use a telnet that
supports sending the break sequence. Typically in unix telnet
you do it with Control-] and then type “send break” followed by
pressing the enter key.

	websocket:host:port,server[,nowait][,nodelay]

	The WebSocket protocol is used instead of raw tcp socket. The
port acts as a WebSocket server. Client mode is not supported.

	unix:path[,server][,nowait][,reconnect=seconds]

	A unix domain socket is used instead of a tcp socket. The option
works the same as if you had specified -serial tcp except
the unix domain socket path is used for connections.

	mon:dev_string

	This is a special option to allow the monitor to be multiplexed
onto another serial port. The monitor is accessed with key
sequence of Control-a and then pressing c. dev_string should be
any one of the serial devices specified above. An example to
multiplex the monitor onto a telnet server listening on port
4444 would be:

-serial mon:telnet::4444,server,nowait

When the monitor is multiplexed to stdio in this way, Ctrl+C
will not terminate QEMU any more but will be passed to the guest
instead.

	braille

	Braille device. This will use BrlAPI to display the braille
output on a real or fake device.

	msmouse

	Three button serial mouse. Configure the guest to use Microsoft
protocol.

	-parallel dev

	Redirect the virtual parallel port to host device dev (same devices
as the serial port). On Linux hosts, /dev/parportN can be used
to use hardware devices connected on the corresponding host parallel
port.

This option can be used several times to simulate up to 3 parallel
ports.

Use -parallel none to disable all parallel ports.

	-monitor dev

	Redirect the monitor to host device dev (same devices as the serial
port). The default device is vc in graphical mode and stdio
in non graphical mode. Use -monitor none to disable the default
monitor.

	-qmp dev

	Like -monitor but opens in ‘control’ mode.

	-qmp-pretty dev

	Like -qmp but uses pretty JSON formatting.

	-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]

	Setup monitor on chardev name. pretty turns on JSON pretty
printing easing human reading and debugging.

	-debugcon dev

	Redirect the debug console to host device dev (same devices as the
serial port). The debug console is an I/O port which is typically
port 0xe9; writing to that I/O port sends output to this device. The
default device is vc in graphical mode and stdio in non
graphical mode.

	-pidfile file

	Store the QEMU process PID in file. It is useful if you launch QEMU
from a script.

	-singlestep

	Run the emulation in single step mode.

	--preconfig

	Pause QEMU for interactive configuration before the machine is
created, which allows querying and configuring properties that will
affect machine initialization. Use QMP command ‘x-exit-preconfig’ to
exit the preconfig state and move to the next state (i.e. run guest
if -S isn’t used or pause the second time if -S is used). This
option is experimental.

	-S

	Do not start CPU at startup (you must type ‘c’ in the monitor).

	-realtime mlock=on|off

	Run qemu with realtime features. mlocking qemu and guest memory can
be enabled via mlock=on (enabled by default).

	-overcommit mem-lock=on|off

	

	-overcommit cpu-pm=on|off

	Run qemu with hints about host resource overcommit. The default is
to assume that host overcommits all resources.

Locking qemu and guest memory can be enabled via mem-lock=on
(disabled by default). This works when host memory is not
overcommitted and reduces the worst-case latency for guest. This is
equivalent to realtime.

Guest ability to manage power state of host cpus (increasing latency
for other processes on the same host cpu, but decreasing latency for
guest) can be enabled via cpu-pm=on (disabled by default). This
works best when host CPU is not overcommitted. When used, host
estimates of CPU cycle and power utilization will be incorrect, not
taking into account guest idle time.

	-gdb dev

	Wait for gdb connection on device dev (see
GDB usage). Typical connections will likely be
TCP-based, but also UDP, pseudo TTY, or even stdio are reasonable
use case. The latter is allowing to start QEMU from within gdb and
establish the connection via a pipe:

(gdb) target remote | exec qemu-system-x86_64 -gdb stdio ...

	-s

	Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
(see GDB usage).

	-d item1[,...]

	Enable logging of specified items. Use ‘-d help’ for a list of log
items.

	-D logfile

	Output log in logfile instead of to stderr

	-dfilter range1[,...]

	Filter debug output to that relevant to a range of target addresses.
The filter spec can be either start+size, start-size or start..end
where start end and size are the addresses and sizes required. For
example:

-dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000

Will dump output for any code in the 0x1000 sized block starting at
0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
another 0x1000 sized block starting at 0xffffffc00005f000.

	-seed number

	Force the guest to use a deterministic pseudo-random number
generator, seeded with number. This does not affect crypto routines
within the host.

	-L path

	Set the directory for the BIOS, VGA BIOS and keymaps.

To list all the data directories, use -L help.

	-bios file

	Set the filename for the BIOS.

	-enable-kvm

	Enable KVM full virtualization support. This option is only
available if KVM support is enabled when compiling.

	-xen-domid id

	Specify xen guest domain id (XEN only).

	-xen-attach

	Attach to existing xen domain. libxl will use this when starting
QEMU (XEN only). Restrict set of available xen operations to
specified domain id (XEN only).

	-no-reboot

	Exit instead of rebooting.

	-no-shutdown

	Don’t exit QEMU on guest shutdown, but instead only stop the
emulation. This allows for instance switching to monitor to commit
changes to the disk image.

	-loadvm file

	Start right away with a saved state (loadvm in monitor)

	-daemonize

	Daemonize the QEMU process after initialization. QEMU will not
detach from standard IO until it is ready to receive connections on
any of its devices. This option is a useful way for external
programs to launch QEMU without having to cope with initialization
race conditions.

	-option-rom file

	Load the contents of file as an option ROM. This option is useful to
load things like EtherBoot.

	-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]

	Specify base as utc or localtime to let the RTC start at
the current UTC or local time, respectively. localtime is
required for correct date in MS-DOS or Windows. To start at a
specific point in time, provide datetime in the format
2006-06-17T16:01:21 or 2006-06-17. The default base is UTC.

By default the RTC is driven by the host system time. This allows
using of the RTC as accurate reference clock inside the guest,
specifically if the host time is smoothly following an accurate
external reference clock, e.g. via NTP. If you want to isolate the
guest time from the host, you can set clock to rt instead,
which provides a host monotonic clock if host support it. To even
prevent the RTC from progressing during suspension, you can set
clock to vm (virtual clock). ‘clock=vm’ is
recommended especially in icount mode in order to preserve
determinism; however, note that in icount mode the speed of the
virtual clock is variable and can in general differ from the host
clock.

Enable driftfix (i386 targets only) if you experience time drift
problems, specifically with Windows’ ACPI HAL. This option will try
to figure out how many timer interrupts were not processed by the
Windows guest and will re-inject them.

	-icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]

	Enable virtual instruction counter. The virtual cpu will execute one
instruction every 2^N ns of virtual time. If auto is specified
then the virtual cpu speed will be automatically adjusted to keep
virtual time within a few seconds of real time.

When the virtual cpu is sleeping, the virtual time will advance at
default speed unless sleep=on|off is specified. With
sleep=on|off, the virtual time will jump to the next timer
deadline instantly whenever the virtual cpu goes to sleep mode and
will not advance if no timer is enabled. This behavior give
deterministic execution times from the guest point of view.

Note that while this option can give deterministic behavior, it does
not provide cycle accurate emulation. Modern CPUs contain
superscalar out of order cores with complex cache hierarchies. The
number of instructions executed often has little or no correlation
with actual performance.

align=on will activate the delay algorithm which will try to
synchronise the host clock and the virtual clock. The goal is to
have a guest running at the real frequency imposed by the shift
option. Whenever the guest clock is behind the host clock and if
align=on is specified then we print a message to the user to
inform about the delay. Currently this option does not work when
shift is auto. Note: The sync algorithm will work for those
shift values for which the guest clock runs ahead of the host clock.
Typically this happens when the shift value is high (how high
depends on the host machine).

When rr option is specified deterministic record/replay is
enabled. Replay log is written into filename file in record mode and
read from this file in replay mode.

Option rrsnapshot is used to create new vm snapshot named snapshot
at the start of execution recording. In replay mode this option is
used to load the initial VM state.

	-watchdog model

	Create a virtual hardware watchdog device. Once enabled (by a guest
action), the watchdog must be periodically polled by an agent inside
the guest or else the guest will be restarted. Choose a model for
which your guest has drivers.

The model is the model of hardware watchdog to emulate. Use
-watchdog help to list available hardware models. Only one
watchdog can be enabled for a guest.

The following models may be available:

	ib700

	iBASE 700 is a very simple ISA watchdog with a single timer.

	i6300esb

	Intel 6300ESB I/O controller hub is a much more featureful
PCI-based dual-timer watchdog.

	diag288

	A virtual watchdog for s390x backed by the diagnose 288
hypercall (currently KVM only).

	-watchdog-action action

	The action controls what QEMU will do when the watchdog timer
expires. The default is reset (forcefully reset the guest).
Other possible actions are: shutdown (attempt to gracefully
shutdown the guest), poweroff (forcefully poweroff the guest),
inject-nmi (inject a NMI into the guest), pause (pause the
guest), debug (print a debug message and continue), or none
(do nothing).

Note that the shutdown action requires that the guest responds
to ACPI signals, which it may not be able to do in the sort of
situations where the watchdog would have expired, and thus
-watchdog-action shutdown is not recommended for production use.

Examples:

-watchdog i6300esb -watchdog-action pause; -watchdog ib700

	-echr numeric_ascii_value

	Change the escape character used for switching to the monitor when
using monitor and serial sharing. The default is 0x01 when using
the -nographic option. 0x01 is equal to pressing
Control-a. You can select a different character from the ascii
control keys where 1 through 26 map to Control-a through Control-z.
For instance you could use the either of the following to change the
escape character to Control-t.

-echr 0x14; -echr 20

	-show-cursor

	Show cursor.

	-tb-size n

	Set TCG translation block cache size. Deprecated, use
‘-accel tcg,tb-size=n’ instead.

	-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

	

	-incoming rdma:host:port[,ipv4][,ipv6]

	Prepare for incoming migration, listen on a given tcp port.

	-incoming unix:socketpath

	Prepare for incoming migration, listen on a given unix socket.

	-incoming fd:fd

	Accept incoming migration from a given filedescriptor.

	-incoming exec:cmdline

	Accept incoming migration as an output from specified external
command.

	-incoming defer

	Wait for the URI to be specified via migrate_incoming. The monitor
can be used to change settings (such as migration parameters) prior
to issuing the migrate_incoming to allow the migration to begin.

	-only-migratable

	Only allow migratable devices. Devices will not be allowed to enter
an unmigratable state.

	-nodefaults

	Don’t create default devices. Normally, QEMU sets the default
devices like serial port, parallel port, virtual console, monitor
device, VGA adapter, floppy and CD-ROM drive and others. The
-nodefaults option will disable all those default devices.

	-chroot dir

	Immediately before starting guest execution, chroot to the specified
directory. Especially useful in combination with -runas.

	-runas user

	Immediately before starting guest execution, drop root privileges,
switching to the specified user.

	-prom-env variable=value

	Set OpenBIOS nvram variable to given value (PPC, SPARC only).

qemu-system-sparc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'

qemu-system-ppc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=hd:2,\yaboot' \
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'

	-semihosting

	Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).

Note that this allows guest direct access to the host filesystem, so
should only be used with a trusted guest OS.

See the -semihosting-config option documentation for further
information about the facilities this enables.

	-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]

	Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II
only).

Note that this allows guest direct access to the host filesystem, so
should only be used with a trusted guest OS.

On Arm this implements the standard semihosting API, version 2.0.

On M68K this implements the “ColdFire GDB” interface used by
libgloss.

Xtensa semihosting provides basic file IO calls, such as
open/read/write/seek/select. Tensilica baremetal libc for ISS and
linux platform “sim” use this interface.

	target=native|gdb|auto

	Defines where the semihosting calls will be addressed, to QEMU
(native) or to GDB (gdb). The default is auto, which
means gdb during debug sessions and native otherwise.

	chardev=str1

	Send the output to a chardev backend output for native or auto
output when not in gdb

	arg=str1,arg=str2,...

	Allows the user to pass input arguments, and can be used
multiple times to build up a list. The old-style
-kernel/-append method of passing a command line is
still supported for backward compatibility. If both the
--semihosting-config arg and the -kernel/-append are
specified, the former is passed to semihosting as it always
takes precedence.

	-old-param

	Old param mode (ARM only).

	-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]

	Enable Seccomp mode 2 system call filter. ‘on’ will enable syscall
filtering and ‘off’ will disable it. The default is ‘off’.

	obsolete=string

	Enable Obsolete system calls

	elevateprivileges=string

	Disable set*uid|gid system calls

	spawn=string

	Disable *fork and execve

	resourcecontrol=string

	Disable process affinity and schedular priority

	-readconfig file

	Read device configuration from file. This approach is useful when
you want to spawn QEMU process with many command line options but
you don’t want to exceed the command line character limit.

	-writeconfig file

	Write device configuration to file. The file can be either filename
to save command line and device configuration into file or dash
-) character to print the output to stdout. This can be later
used as input file for -readconfig option.

	-no-user-config

	The -no-user-config option makes QEMU not load any of the
user-provided config files on sysconfdir.

	-trace [[enable=]pattern][,events=file][,file=file]

	Specify tracing options.

	
[enable=]PATTERN

	Immediately enable events matching PATTERN
(either event name or a globbing pattern). This option is only
available if QEMU has been compiled with the simple, log
or ftrace tracing backend. To specify multiple events or patterns,
specify the -trace option multiple times.

Use -trace help to print a list of names of trace points.

	
events=FILE

	Immediately enable events listed in FILE.
The file must contain one event name (as listed in the trace-events-all
file) per line; globbing patterns are accepted too. This option is only
available if QEMU has been compiled with the simple, log or
ftrace tracing backend.

	
file=FILE

	Log output traces to FILE.
This option is only available if QEMU has been compiled with
the simple tracing backend.

	-plugin file=file[,arg=string]

	Load a plugin.

	file=file

	Load the given plugin from a shared library file.

	arg=string

	Argument string passed to the plugin. (Can be given multiple
times.)

	-enable-fips

	Enable FIPS 140-2 compliance mode.

	-msg timestamp[=on|off]

	Control error message format.

	timestamp=on|off

	Prefix messages with a timestamp. Default is off.

	-dump-vmstate file

	Dump json-encoded vmstate information for current machine type to
file in file

	-enable-sync-profile

	Enable synchronization profiling.

Generic object creation

	-object typename[,prop1=value1,...]

	Create a new object of type typename setting properties in the order
they are specified. Note that the ‘id’ property must be set. These
objects are placed in the ‘/objects’ path.

	-object memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-nodes=host-nodes,policy=default|preferred|bind|interleave,align=align

	Creates a memory file backend object, which can be used to back
the guest RAM with huge pages.

The id parameter is a unique ID that will be used to
reference this memory region when configuring the -numa
argument.

The size option provides the size of the memory region, and
accepts common suffixes, eg 500M.

The mem-path provides the path to either a shared memory or
huge page filesystem mount.

The share boolean option determines whether the memory
region is marked as private to QEMU, or shared. The latter
allows a co-operating external process to access the QEMU memory
region.

The share is also required for pvrdma devices due to
limitations in the RDMA API provided by Linux.

Setting share=on might affect the ability to configure NUMA
bindings for the memory backend under some circumstances, see
Documentation/vm/numa_memory_policy.txt on the Linux kernel
source tree for additional details.

Setting the discard-data boolean option to on indicates that
file contents can be destroyed when QEMU exits, to avoid
unnecessarily flushing data to the backing file. Note that
discard-data is only an optimization, and QEMU might not
discard file contents if it aborts unexpectedly or is terminated
using SIGKILL.

The merge boolean option enables memory merge, also known as
MADV_MERGEABLE, so that Kernel Samepage Merging will consider
the pages for memory deduplication.

Setting the dump boolean option to off excludes the memory
from core dumps. This feature is also known as MADV_DONTDUMP.

The prealloc boolean option enables memory preallocation.

The host-nodes option binds the memory range to a list of
NUMA host nodes.

The policy option sets the NUMA policy to one of the
following values:

	default

	default host policy

	preferred

	prefer the given host node list for allocation

	bind

	restrict memory allocation to the given host node list

	interleave

	interleave memory allocations across the given host node
list

The align option specifies the base address alignment when
QEMU mmap(2) mem-path, and accepts common suffixes, eg
2M. Some backend store specified by mem-path requires an
alignment different than the default one used by QEMU, eg the
device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
such cases, users can specify the required alignment via this
option.

The pmem option specifies whether the backing file specified
by mem-path is in host persistent memory that can be
accessed using the SNIA NVM programming model (e.g. Intel
NVDIMM). If pmem is set to ‘on’, QEMU will take necessary
operations to guarantee the persistence of its own writes to
mem-path (e.g. in vNVDIMM label emulation and live
migration). Also, we will map the backend-file with MAP_SYNC
flag, which ensures the file metadata is in sync for
mem-path in case of host crash or a power failure. MAP_SYNC
requires support from both the host kernel (since Linux kernel
4.15) and the filesystem of mem-path mounted with DAX
option.

	-object memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave

	Creates a memory backend object, which can be used to back the
guest RAM. Memory backend objects offer more control than the
-m option that is traditionally used to define guest RAM.
Please refer to memory-backend-file for a description of the
options.

	-object memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

	Creates an anonymous memory file backend object, which allows
QEMU to share the memory with an external process (e.g. when
using vhost-user). The memory is allocated with memfd and
optional sealing. (Linux only)

The seal option creates a sealed-file, that will block
further resizing the memory (‘on’ by default).

The hugetlb option specify the file to be created resides in
the hugetlbfs filesystem (since Linux 4.14). Used in conjunction
with the hugetlb option, the hugetlbsize option specify
the hugetlb page size on systems that support multiple hugetlb
page sizes (it must be a power of 2 value supported by the
system).

In some versions of Linux, the hugetlb option is
incompatible with the seal option (requires at least Linux
4.16).

Please refer to memory-backend-file for a description of the
other options.

The share boolean option is on by default with memfd.

	-object rng-builtin,id=id

	Creates a random number generator backend which obtains entropy
from QEMU builtin functions. The id parameter is a unique ID
that will be used to reference this entropy backend from the
virtio-rng device. By default, the virtio-rng device
uses this RNG backend.

	-object rng-random,id=id,filename=/dev/random

	Creates a random number generator backend which obtains entropy
from a device on the host. The id parameter is a unique ID
that will be used to reference this entropy backend from the
virtio-rng device. The filename parameter specifies
which file to obtain entropy from and if omitted defaults to
/dev/urandom.

	-object rng-egd,id=id,chardev=chardevid

	Creates a random number generator backend which obtains entropy
from an external daemon running on the host. The id
parameter is a unique ID that will be used to reference this
entropy backend from the virtio-rng device. The chardev
parameter is the unique ID of a character device backend that
provides the connection to the RNG daemon.

	-object tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off

	Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is
a unique ID which network backends will use to access the
credentials. The endpoint is either server or client
depending on whether the QEMU network backend that uses the
credentials will be acting as a client or as a server. If
verify-peer is enabled (the default) then once the handshake
is completed, the peer credentials will be verified, though this
is a no-op for anonymous credentials.

The dir parameter tells QEMU where to find the credential files.
For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of
DH parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

	-object tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]

	Creates a TLS Pre-Shared Keys (PSK) credentials object, which
can be used to provide TLS support on network backends. The
id parameter is a unique ID which network backends will use
to access the credentials. The endpoint is either server
or client depending on whether the QEMU network backend that
uses the credentials will be acting as a client or as a server.
For clients only, username is the username which will be
sent to the server. If omitted it defaults to “qemu”.

The dir parameter tells QEMU where to find the keys file. It is
called “dir/keys.psk” and contains “username:key” pairs. This
file can most easily be created using the GnuTLS psktool
program.

For server endpoints, dir may also contain a file dh-params.pem
providing diffie-hellman parameters to use for the TLS server.
If the file is missing, QEMU will generate a set of DH
parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated up
front and saved.

	-object tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id

	Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is
a unique ID which network backends will use to access the
credentials. The endpoint is either server or client
depending on whether the QEMU network backend that uses the
credentials will be acting as a client or as a server. If
verify-peer is enabled (the default) then once the handshake
is completed, the peer credentials will be verified. With x509
certificates, this implies that the clients must be provided
with valid client certificates too.

The dir parameter tells QEMU where to find the credential files.
For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of
DH parameters at startup. This is a computationally expensive
operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

For x509 certificate credentials the directory will contain
further files providing the x509 certificates. The certificates
must be stored in PEM format, in filenames ca-cert.pem,
ca-crl.pem (optional), server-cert.pem (only servers),
server-key.pem (only servers), client-cert.pem (only clients),
and client-key.pem (only clients).

For the server-key.pem and client-key.pem files which contain
sensitive private keys, it is possible to use an encrypted
version by providing the passwordid parameter. This provides the
ID of a previously created secret object containing the
password for decryption.

The priority parameter allows to override the global default
priority used by gnutls. This can be useful if the system
administrator needs to use a weaker set of crypto priorities for
QEMU without potentially forcing the weakness onto all
applications. Or conversely if one wants wants a stronger
default for QEMU than for all other applications, they can do
this through this parameter. Its format is a gnutls priority
string as described at
https://gnutls.org/manual/html_node/Priority-Strings.html.

	-object filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off]

	Interval t can’t be 0, this filter batches the packet delivery:
all packets arriving in a given interval on netdev netdevid are
delayed until the end of the interval. Interval is in
microseconds. status is optional that indicate whether the
netfilter is on (enabled) or off (disabled), the default status
for netfilter will be ‘on’.

queue all|rx|tx is an option that can be applied to any
netfilter.

all: the filter is attached both to the receive and the
transmit queue of the netdev (default).

rx: the filter is attached to the receive queue of the
netdev, where it will receive packets sent to the netdev.

tx: the filter is attached to the transmit queue of the
netdev, where it will receive packets sent by the netdev.

	-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

	filter-mirror on netdev netdevid,mirror net packet to
chardevchardevid, if it has the vnet_hdr_support flag,
filter-mirror will mirror packet with vnet_hdr_len.

	-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

	filter-redirector on netdev netdevid,redirect filter’s net
packet to chardev chardevid,and redirect indev’s packet to
filter.if it has the vnet_hdr_support flag, filter-redirector
will redirect packet with vnet_hdr_len. Create a
filter-redirector we need to differ outdev id from indev id, id
can not be the same. we can just use indev or outdev, but at
least one of indev or outdev need to be specified.

	-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]

	Filter-rewriter is a part of COLO project.It will rewrite tcp
packet to secondary from primary to keep secondary tcp
connection,and rewrite tcp packet to primary from secondary make
tcp packet can be handled by client.if it has the
vnet_hdr_support flag, we can parse packet with vnet header.

usage: colo secondary: -object
filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
filter-rewriter,id=rew0,netdev=hn0,queue=all

	-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len]

	Dump the network traffic on netdev dev to the file specified by
filename. At most len bytes (64k by default) per packet are
stored. The file format is libpcap, so it can be analyzed with
tools such as tcpdump or Wireshark.

	-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id]

	Colo-compare gets packet from primary_inchardevid and
secondary_inchardevid, than compare primary packet with
secondary packet. If the packets are same, we will output
primary packet to outdevchardevid, else we will notify
colo-frame do checkpoint and send primary packet to
outdevchardevid. In order to improve efficiency, we need to put
the task of comparison in another thread. If it has the
vnet_hdr_support flag, colo compare will send/recv packet with
vnet_hdr_len. If you want to use Xen COLO, will need the
notify_dev to notify Xen colo-frame to do checkpoint.

we must use it with the help of filter-mirror and
filter-redirector.

KVM COLO

primary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-object iothread,id=iothread1
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1

secondary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
-device e1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

Xen COLO

primary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object iothread,id=iothread1
-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1

secondary:
-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
-device e1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

If you want to know the detail of above command line, you can
read the colo-compare git log.

	-object cryptodev-backend-builtin,id=id[,queues=queues]

	Creates a cryptodev backend which executes crypto opreation from
the QEMU cipher APIS. The id parameter is a unique ID that will
be used to reference this cryptodev backend from the
virtio-crypto device. The queues parameter is optional,
which specify the queue number of cryptodev backend, the default
of queues is 1.

qemu-system-x86_64 [...] -object cryptodev-backend-builtin,id=cryptodev0 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 [...]

	-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]

	Creates a vhost-user cryptodev backend, backed by a chardev
chardevid. The id parameter is a unique ID that will be used to
reference this cryptodev backend from the virtio-crypto
device. The chardev should be a unix domain socket backed one.
The vhost-user uses a specifically defined protocol to pass
vhost ioctl replacement messages to an application on the other
end of the socket. The queues parameter is optional, which
specify the queue number of cryptodev backend for multiqueue
vhost-user, the default of queues is 1.

qemu-system-x86_64 [...] -chardev socket,id=chardev0,path=/path/to/socket -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 [...]

	-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]

	

	-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]

	Defines a secret to store a password, encryption key, or some
other sensitive data. The sensitive data can either be passed
directly via the data parameter, or indirectly via the file
parameter. Using the data parameter is insecure unless the
sensitive data is encrypted.

The sensitive data can be provided in raw format (the default),
or base64. When encoded as JSON, the raw format only supports
valid UTF-8 characters, so base64 is recommended for sending
binary data. QEMU will convert from which ever format is
provided to the format it needs internally. eg, an RBD password
can be provided in raw format, even though it will be base64
encoded when passed onto the RBD sever.

For added protection, it is possible to encrypt the data
associated with a secret using the AES-256-CBC cipher. Use of
encryption is indicated by providing the keyid and iv
parameters. The keyid parameter provides the ID of a previously
defined secret that contains the AES-256 decryption key. This
key should be 32-bytes long and be base64 encoded. The iv
parameter provides the random initialization vector used for
encryption of this particular secret and should be a base64
encrypted string of the 16-byte IV.

The simplest (insecure) usage is to provide the secret inline

qemu-system-x86_64 -object secret,id=sec0,data=letmein,format=raw

The simplest secure usage is to provide the secret via a file

printf “letmein” > mypasswd.txt # QEMU_SYSTEM_MACRO -object
secret,id=sec0,file=mypasswd.txt,format=raw

For greater security, AES-256-CBC should be used. To illustrate
usage, consider the openssl command line tool which can encrypt
the data. Note that when encrypting, the plaintext must be
padded to the cipher block size (32 bytes) using the standard
PKCS#5/6 compatible padding algorithm.

First a master key needs to be created in base64 encoding:

openssl rand -base64 32 > key.b64
KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')

Each secret to be encrypted needs to have a random
initialization vector generated. These do not need to be kept
secret

openssl rand -base64 16 > iv.b64
IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')

The secret to be defined can now be encrypted, in this case
we’re telling openssl to base64 encode the result, but it could
be left as raw bytes if desired.

SECRET=$(printf "letmein" |
 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)

When launching QEMU, create a master secret pointing to
key.b64 and specify that to be used to decrypt the user
password. Pass the contents of iv.b64 to the second secret

qemu-system-x86_64 -object secret,id=secmaster0,format=base64,file=key.b64 -object secret,id=sec0,keyid=secmaster0,format=base64, data=$SECRET,iv=$(<iv.b64)

	-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,session-file=file]

	Create a Secure Encrypted Virtualization (SEV) guest object,
which can be used to provide the guest memory encryption support
on AMD processors.

When memory encryption is enabled, one of the physical address
bit (aka the C-bit) is utilized to mark if a memory page is
protected. The cbitpos is used to provide the C-bit
position. The C-bit position is Host family dependent hence user
must provide this value. On EPYC, the value should be 47.

When memory encryption is enabled, we loose certain bits in
physical address space. The reduced-phys-bits is used to
provide the number of bits we loose in physical address space.
Similar to C-bit, the value is Host family dependent. On EPYC,
the value should be 5.

The sev-device provides the device file to use for
communicating with the SEV firmware running inside AMD Secure
Processor. The default device is ‘/dev/sev’. If hardware
supports memory encryption then /dev/sev devices are created by
CCP driver.

The policy provides the guest policy to be enforced by the
SEV firmware and restrict what configuration and operational
commands can be performed on this guest by the hypervisor. The
policy should be provided by the guest owner and is bound to the
guest and cannot be changed throughout the lifetime of the
guest. The default is 0.

If guest policy allows sharing the key with another SEV
guest then handle can be use to provide handle of the guest
from which to share the key.

The dh-cert-file and session-file provides the guest
owner’s Public Diffie-Hillman key defined in SEV spec. The PDH
and session parameters are used for establishing a cryptographic
session with the guest owner to negotiate keys used for
attestation. The file must be encoded in base64.

e.g to launch a SEV guest

qemu_system-x86_64
 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 -machine ...,memory-encryption=sev0

	-object authz-simple,id=id,identity=string

	Create an authorization object that will control access to
network services.

The identity parameter is identifies the user and its format
depends on the network service that authorization object is
associated with. For authorizing based on TLS x509 certificates,
the identity must be the x509 distinguished name. Note that care
must be taken to escape any commas in the distinguished name.

An example authorization object to validate a x509 distinguished
name would look like:

qemu-system-x86_64 ...
 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' ...

Note the use of quotes due to the x509 distinguished name
containing whitespace, and escaping of ‘,’.

	-object authz-listfile,id=id,filename=path,refresh=yes|no

	Create an authorization object that will control access to
network services.

The filename parameter is the fully qualified path to a file
containing the access control list rules in JSON format.

An example set of rules that match against SASL usernames might
look like:

{
 "rules": [
 { "match": "fred", "policy": "allow", "format": "exact" },
 { "match": "bob", "policy": "allow", "format": "exact" },
 { "match": "danb", "policy": "deny", "format": "glob" },
 { "match": "dan*", "policy": "allow", "format": "exact" },
],
 "policy": "deny"
}

When checking access the object will iterate over all the rules
and the first rule to match will have its policy value
returned as the result. If no rules match, then the default
policy value is returned.

The rules can either be an exact string match, or they can use
the simple UNIX glob pattern matching to allow wildcards to be
used.

If refresh is set to true the file will be monitored and
automatically reloaded whenever its content changes.

As with the authz-simple object, the format of the identity
strings being matched depends on the network service, but is
usually a TLS x509 distinguished name, or a SASL username.

An example authorization object to validate a SASL username
would look like:

qemu-system-x86_64 ...
 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
 ...

	-object authz-pam,id=id,service=string

	Create an authorization object that will control access to
network services.

The service parameter provides the name of a PAM service to
use for authorization. It requires that a file
/etc/pam.d/service exist to provide the configuration for
the account subsystem.

An example authorization object to validate a TLS x509
distinguished name would look like:

qemu-system-x86_64 ...
 -object authz-pam,id=auth0,service=qemu-vnc
 ...

There would then be a corresponding config file for PAM at
/etc/pam.d/qemu-vnc that contains:

account requisite pam_listfile.so item=user sense=allow \
 file=/etc/qemu/vnc.allow

Finally the /etc/qemu/vnc.allow file would contain the list
of x509 distingished names that are permitted access

CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB

	-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink

	Creates a dedicated event loop thread that devices can be
assigned to. This is known as an IOThread. By default device
emulation happens in vCPU threads or the main event loop thread.
This can become a scalability bottleneck. IOThreads allow device
emulation and I/O to run on other host CPUs.

The id parameter is a unique ID that will be used to
reference this IOThread from -device ...,iothread=id.
Multiple devices can be assigned to an IOThread. Note that not
all devices support an iothread parameter.

The query-iothreads QMP command lists IOThreads and reports
their thread IDs so that the user can configure host CPU
pinning/affinity.

IOThreads use an adaptive polling algorithm to reduce event loop
latency. Instead of entering a blocking system call to monitor
file descriptors and then pay the cost of being woken up when an
event occurs, the polling algorithm spins waiting for events for
a short time. The algorithm’s default parameters are suitable
for many cases but can be adjusted based on knowledge of the
workload and/or host device latency.

The poll-max-ns parameter is the maximum number of
nanoseconds to busy wait for events. Polling can be disabled by
setting this value to 0.

The poll-grow parameter is the multiplier used to increase
the polling time when the algorithm detects it is missing events
due to not polling long enough.

The poll-shrink parameter is the divisor used to decrease
the polling time when the algorithm detects it is spending too
long polling without encountering events.

The polling parameters can be modified at run-time using the
qom-set command (where iothread1 is the IOThread’s
id):

(qemu) qom-set /objects/iothread1 poll-max-ns 100000

During the graphical emulation, you can use special key combinations to
change modes. The default key mappings are shown below, but if you use
-alt-grab then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt)
and if you use -ctrl-grab then the modifier is the right Ctrl key
(instead of Ctrl-Alt):

	Ctrl-Alt-f

	Toggle full screen

	Ctrl-Alt-+

	Enlarge the screen

	Ctrl-Alt–

	Shrink the screen

	Ctrl-Alt-u

	Restore the screen’s un-scaled dimensions

	Ctrl-Alt-n

	Switch to virtual console ‘n’. Standard console mappings are:

	1

	Target system display

	2

	Monitor

	3

	Serial port

	Ctrl-Alt

	Toggle mouse and keyboard grab.

In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and
Ctrl-PageDown to move in the back log.

During emulation, if you are using a character backend multiplexer
(which is the default if you are using -nographic) then several
commands are available via an escape sequence. These key sequences all
start with an escape character, which is Ctrl-a by default, but can be
changed with -echr. The list below assumes you’re using the default.

	Ctrl-a h

	Print this help

	Ctrl-a x

	Exit emulator

	Ctrl-a s

	Save disk data back to file (if -snapshot)

	Ctrl-a t

	Toggle console timestamps

	Ctrl-a b

	Send break (magic sysrq in Linux)

	Ctrl-a c

	Rotate between the frontends connected to the multiplexer (usually
this switches between the monitor and the console)

	Ctrl-a Ctrl-a

	Send the escape character to the frontend

Notes

In addition to using normal file images for the emulated storage
devices, QEMU can also use networked resources such as iSCSI devices.
These are specified using a special URL syntax.

	iSCSI

	iSCSI support allows QEMU to access iSCSI resources directly and use
as images for the guest storage. Both disk and cdrom images are
supported.

Syntax for specifying iSCSI LUNs is
“iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>”

By default qemu will use the iSCSI initiator-name
‘iqn.2008-11.org.linux-kvm[:<name>]’ but this can also be set from
the command line or a configuration file.

Since version Qemu 2.4 it is possible to specify a iSCSI request
timeout to detect stalled requests and force a reestablishment of the
session. The timeout is specified in seconds. The default is 0 which
means no timeout. Libiscsi 1.15.0 or greater is required for this
feature.

Example (without authentication):

qemu-system-x86_64 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via URL):

qemu-system-x86_64 -drive file=iscsi://user%password@192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via environment variables):

LIBISCSI_CHAP_USERNAME="user" LIBISCSI_CHAP_PASSWORD="password" qemu-system-x86_64 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

	NBD

	QEMU supports NBD (Network Block Devices) both using TCP protocol as
well as Unix Domain Sockets. With TCP, the default port is 10809.

Syntax for specifying a NBD device using TCP, in preferred URI form:
“nbd://<server-ip>[:<port>]/[<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets;
remember that ‘?’ is a shell glob character and may need quoting:
“nbd+unix:///[<export>]?socket=<domain-socket>”

Older syntax that is also recognized:
“nbd:<server-ip>:<port>[:exportname=<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets
“nbd:unix:<domain-socket>[:exportname=<export>]”

Example for TCP

qemu-system-x86_64 --drive file=nbd:192.0.2.1:30000

Example for Unix Domain Sockets

qemu-system-x86_64 --drive file=nbd:unix:/tmp/nbd-socket

	SSH

	QEMU supports SSH (Secure Shell) access to remote disks.

Examples:

qemu-system-x86_64 -drive file=ssh://user@host/path/to/disk.img
qemu-system-x86_64 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other
authentication methods may be supported in future.

	Sheepdog

	Sheepdog is a distributed storage system for QEMU. QEMU supports
using either local sheepdog devices or remote networked devices.

Syntax for specifying a sheepdog device

sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

Example

qemu-system-x86_64 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

See also https://sheepdog.github.io/sheepdog/.

	GlusterFS

	GlusterFS is a user space distributed file system. QEMU supports the
use of GlusterFS volumes for hosting VM disk images using TCP, Unix
Domain Sockets and RDMA transport protocols.

Syntax for specifying a VM disk image on GlusterFS volume is

URI:
gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

JSON:
'json:{"driver":"qcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
 "server":[{"type":"tcp","host":"...","port":"..."},
 {"type":"unix","socket":"..."}]}}'

Example

URI:
qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log

JSON:
qemu-system-x86_64 'json:{"driver":"qcow2",
 "file":{"driver":"gluster",
 "volume":"testvol","path":"a.img",
 "debug":9,"logfile":"/var/log/qemu-gluster.log",
 "server":[{"type":"tcp","host":"1.2.3.4","port":24007},
 {"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

See also http://www.gluster.org.

	HTTP/HTTPS/FTP/FTPS

	QEMU supports read-only access to files accessed over http(s) and
ftp(s).

Syntax using a single filename:

<protocol>://[<username>[:<password>]@]<host>/<path>

where:

	protocol

	‘http’, ‘https’, ‘ftp’, or ‘ftps’.

	username

	Optional username for authentication to the remote server.

	password

	Optional password for authentication to the remote server.

	host

	Address of the remote server.

	path

	Path on the remote server, including any query string.

The following options are also supported:

	url

	The full URL when passing options to the driver explicitly.

	readahead

	The amount of data to read ahead with each range request to the
remote server. This value may optionally have the suffix ‘T’, ‘G’,
‘M’, ‘K’, ‘k’ or ‘b’. If it does not have a suffix, it will be
assumed to be in bytes. The value must be a multiple of 512 bytes.
It defaults to 256k.

	sslverify

	Whether to verify the remote server’s certificate when connecting
over SSL. It can have the value ‘on’ or ‘off’. It defaults to
‘on’.

	cookie

	Send this cookie (it can also be a list of cookies separated by
‘;’) with each outgoing request. Only supported when using
protocols such as HTTP which support cookies, otherwise ignored.

	timeout

	Set the timeout in seconds of the CURL connection. This timeout is
the time that CURL waits for a response from the remote server to
get the size of the image to be downloaded. If not set, the
default timeout of 5 seconds is used.

Note that when passing options to qemu explicitly, driver is the
value of <protocol>.

Example: boot from a remote Fedora 20 live ISO image

qemu_system-x86_64 --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

qemu_system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

Example: boot from a remote Fedora 20 cloud image using a local
overlay for writes, copy-on-read, and a readahead of 64k

qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2

qemu_system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on

Example: boot from an image stored on a VMware vSphere server with a
self-signed certificate using a local overlay for writes, a readahead
of 64k and a timeout of 10 seconds.

qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"https",, "file.url":"https://user:password@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}' /tmp/test.qcow2

qemu_system-x86_64 -drive file=/tmp/test.qcow2

See also

The HTML documentation of QEMU for more precise information and Linux
user mode emulator invocation.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to QEMU’s documentation!

 		
 QEMU System Emulation Management and Interoperability Guide

 		
 Dirty Bitmaps and Incremental Backup

 		
 Overview

 		
 Supported Image Formats

 		
 Dirty Bitmap Names

 		
 Bitmap Status

 		
 Basic QMP Usage

 		
 Bitmap Persistence

 		
 Transactions

 		
 Incremental Backups - Push Model

 		
 Push Backup Errors & Recovery

 		
 D-Bus

 		
 Introduction

 		
 Security

 		
 Guidelines

 		
 QEMU Interfaces

 		
 D-Bus VMState

 		
 Introduction

 		
 Interface

 		
 Live Block Device Operations

 		
 Disk image backing chain notation

 		
 Brief overview of live block QMP primitives

 		
 Interacting with a QEMU instance

 		
 Example disk image chain

 		
 A note on points-in-time vs file names

 		
 Live block streaming — block-stream

 		
 Live block commit — block-commit

 		
 Live disk synchronization — drive-mirror and blockdev-mirror

 		
 Live disk backup — drive-backup and blockdev-backup

 		
 Persistent reservation helper protocol

 		
 Connection and initialization

 		
 Command format

 		
 QEMU Guest Agent

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Files

 		
 See also

 		
 Vhost-user Protocol

 		
 Introduction

 		
 Message Specification

 		
 Communication

 		
 Backend program conventions

 		
 Vhost-user-gpu Protocol

 		
 Introduction

 		
 Wire format

 		
 Communication

 		
 QEMU Developer’s Guide

 		
 QEMU and Kconfig

 		
 The Kconfig language

 		
 Guidelines for writing Kconfig files

 		
 Writing and modifying default configurations

 		
 Kconfig.host

 		
 Load and Store APIs

 		
 ld*_p and st*_p

 		
 cpu_{ld,st}*_mmuidx_ra

 		
 cpu_{ld,st}*_data_ra

 		
 cpu_{ld,st}*_data

 		
 cpu_ld*_code

 		
 translator_ld*

 		
 helper_*_{ld,st}*_mmu

 		
 address_space_*

 		
 address_space_write_rom

 		
 {ld,st}*_phys

 		
 cpu_physical_memory_*

 		
 cpu_memory_rw_debug

 		
 dma_memory_*

 		
 pci_dma_* and {ld,st}*_pci_dma

 		
 The memory API

 		
 Types of regions

 		
 Migration

 		
 Region names

 		
 Region lifecycle

 		
 Overlapping regions and priority

 		
 Visibility

 		
 Example memory map

 		
 MMIO Operations

 		
 API Reference

 		
 Migration

 		
 Transports

 		
 Common infrastructure

 		
 Saving the state of one device

 		
 Stream structure

 		
 Postcopy

 		
 Firmware

 		
 QEMU and the stable process

 		
 QEMU stable releases

 		
 What should go into a stable release?

 		
 How to get a patch into QEMU stable

 		
 Stable release process

 		
 Testing in QEMU

 		
 Testing with “make check”

 		
 QEMU iotests

 		
 Docker based tests

 		
 VM testing

 		
 Image fuzzer testing

 		
 Acceptance tests using the Avocado Framework

 		
 Testing with “make check-tcg”

 		
 Decodetree Specification

 		
 Fields

 		
 Argument Sets

 		
 Formats

 		
 Patterns

 		
 Pattern Groups

 		
 Secure Coding Practices

 		
 Reporting Security Bugs

 		
 General Secure C Coding Practices

 		
 Input Validation

 		
 Unexpected Device Accesses

 		
 Live Migration

 		
 Guest Memory Access Races

 		
 Translator Internals

 		
 CPU state optimisations

 		
 Direct block chaining

 		
 Self-modifying code and translated code invalidation

 		
 Exception support

 		
 MMU emulation

 		
 QEMU TCG Plugins

 		
 API Stability

 		
 Usage

 		
 Plugin Life cycle

 		
 Internals

 		
 Bitwise operations

 		
 Reset in QEMU: the Resettable interface

 		
 Triggering reset

 		
 Multi-phase mechanism

 		
 Handling reset in a resettable object

 		
 Base class handling of reset

 		
 Booting from real channel-attached devices on s390x

 		
 s390 hardware IPL

 		
 How this all pertains to QEMU (and the kernel)

 		
 What QEMU does

 		
 QEMU System Emulation Guest Hardware Specifications

 		
 POWER9 XIVE interrupt controller

 		
 XIVE architecture

 		
 Overview of the QEMU models for XIVE

 		
 XIVE for sPAPR (pseries machines)

 		
 CAS Negotiation

 		
 KVM negotiation

 		
 XIVE Device tree properties

 		
 IRQ number space

 		
 Monitoring XIVE

 		
 QEMU and ACPI BIOS Generic Event Device interface

 		
 GED IO interface (4 byte access)

 		
 QEMU TPM Device

 		
 Guest-side hardware interface

 		
 fw_cfg interface

 		
 ACPI interface

 		
 TPM backend devices

 		
 Migration with the TPM emulator

 		
 QEMU System Emulation User’s Guide

 		
 Quick Start

 		
 Invocation

 		
 Standard options

 		
 Block device options

 		
 USB options

 		
 Display options

 		
 i386 target only

 		
 Network options

 		
 Character device options

 		
 TPM device options

 		
 Linux/Multiboot boot specific

 		
 Debug/Expert options

 		
 Generic object creation

 		
 Device URL Syntax

 		
 Keys in the graphical frontends

 		
 Keys in the character backend multiplexer

 		
 QEMU Monitor

 		
 Commands

 		
 Integer expressions

 		
 Disk Images

 		
 Quick start for disk image creation

 		
 Snapshot mode

 		
 VM snapshots

 		
 Disk image file formats

 		
 Read-only formats

 		
 Using host drives

 		
 Virtual FAT disk images

 		
 NBD access

 		
 Sheepdog disk images

 		
 iSCSI LUNs

 		
 GlusterFS disk images

 		
 Secure Shell (ssh) disk images

 		
 NVMe disk images

 		
 Disk image file locking

 		
 Network emulation

 		
 Using TAP network interfaces

 		
 Using the user mode network stack

 		
 Hubs

 		
 Connecting emulated networks between QEMU instances

 		
 USB emulation

 		
 Connecting USB devices

 		
 Using host USB devices on a Linux host

 		
 Inter-VM Shared Memory device

 		
 Migration with ivshmem

 		
 ivshmem and hugepages

 		
 Direct Linux Boot

 		
 VNC security

 		
 Without passwords

 		
 With passwords

 		
 With x509 certificates

 		
 With x509 certificates and client verification

 		
 With x509 certificates, client verification and passwords

 		
 With SASL authentication

 		
 With x509 certificates and SASL authentication

 		
 Configuring SASL mechanisms

 		
 TLS setup for network services

 		
 Setup the Certificate Authority

 		
 Issuing server certificates

 		
 Issuing client certificates

 		
 TLS x509 credential configuration

 		
 TLS Pre-Shared Keys (PSK)

 		
 GDB usage

 		
 Managed start up options

 		
 QEMU System Emulator Targets

 		
 x86 (PC) System emulator

 		
 PowerPC System emulator

 		
 Sparc32 System emulator

 		
 Sparc64 System emulator

 		
 MIPS System emulator

 		
 ARM System emulator

 		
 ColdFire System emulator

 		
 Xtensa System emulator

 		
 Security

 		
 Overview

 		
 Security Requirements

 		
 Architecture

 		
 Sensitive configurations

 		
 Adjunct Processor (AP) Device

 		
 Introduction

 		
 AP Architectural Overview

 		
 Start Interpretive Execution (SIE) Instruction

 		
 AP Matrix Configuration on Linux Host

 		
 Example: Configure AP Matrices for Three Linux Guests

 		
 Limitations

 		
 Deprecated features

 		
 System emulator command line arguments

 		
 QEMU Machine Protocol (QMP) commands

 		
 Human Monitor Protocol (HMP) commands

 		
 Guest Emulator ISAs

 		
 System emulator CPUS

 		
 System emulator devices

 		
 System emulator machines

 		
 Device options

 		
 Related binaries

 		
 Backwards compatibility

 		
 Recently removed features

 		
 QEMU Machine Protocol (QMP) commands

 		
 Related binaries

 		
 Supported build platforms

 		
 Linux OS

 		
 Windows

 		
 macOS

 		
 FreeBSD

 		
 NetBSD

 		
 OpenBSD

 		
 License

 		
 QEMU Tools Guide

 		
 QEMU disk image utility

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Notes

 		
 QEMU Disk Network Block Device Server

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Examples

 		
 See also

 		
 QEMU SystemTap trace tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See also

 		
 QEMU 9p virtfs proxy filesystem helper

 		
 Synopsis

 		
 Description

 		
 Options

 		
 QEMU virtio-fs shared file system daemon

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Examples

 		
 QEMU User Mode Emulation User’s Guide

 		
 QEMU User space emulator

 		
 Supported Operating Systems

 		
 Features

 		
 Linux User space emulator

 		
 BSD User space emulator

_static/up.png

